
Gamess-UK
Perfomance

measurements on a
cluster of RISC/6000

Giuseppe Vitillaro

Scientific and Technical

System Solutions

IBM Semea

VNET 75819593@ITHVM06

INTERNET peppe@ipgaix.unipg.it

BITNET VITILLAR@BITNET

September 23, 1993

Giuseppe Vitillaro 1 2/12/1999

● The cluster is composed of three IBM RISC/

6000 Model 550:

◆ rs1 : 448 Mb of RAM

◆ rs2 : 128 Mb of RAM

◆ rs3 : 256 Mb of RAM

● They are connected in two ways:

◆ Token Ring 16 Mbits/sec

◆ Point to Point SOCC (Serial Optical Channel Con-

verter) 220 Mbits/sec

Hardware Environment

Giuseppe Vitillaro 2 2/12/1999

Hardware Environment

rs1

rs2 rs3

rs2o

rs1o

rs3o

Token Ring 16 Mbit/sec

SOCC 220 Mbit/sec

node 0node 2

node 1

Giuseppe Vitillaro 3 2/12/1999

● All the nodes run under AIX/6000 3.2.3e

● All the nodes share the filesystems using NFS

on both SOCC and TOKEN RING networks

● A modified SOCC device driver (provided by

IBM ECSEC) is installed on all the nodes

● The Standard PVM 2.4.1 is installed on all the

nodes

● The Special PVMe (provided by IBM ECSEC)

is installed on all the nodes

Software Environment

Giuseppe Vitillaro 4 2/12/1999

● Quantum Chemistry package GAMESS-UK

1992

● The parallelization of GAMESS-UK 1992 was

done using the package TCGMSG 4.0 working

on top of TCP/IP on both Token Ring and

SOCC networks

● All the software was recompiled on the cluster

using:

◆ IBM AIX XL FORTRAN Compiler/6000 2.3.0

◆ IBM AIX XL C Compiler/6000 1.2.1

● All the software was optimized

Benchmarks Environment

Giuseppe Vitillaro 5 2/12/1999

● GAMESS-UK 1992 uses TCGMSG 4.0 to run

in parallel

● TCGMSG 4.0 implements a message passing

model over the standard TCP sockets

● The program uses the TCGMSG primitives to

implement a SPMD (Single Process Multiple

Data) model: one instance of the program runs

on all the nodes doing the same computation

on different data

● The parallel version of the program is started

from a single node (node 0), using the driver

program parallel that reads a configuration file

and starts (using rsh) GAMESS on all the

nodes

Benchmarks Environment

Benchmarks Execution
● Serial Run:

◆ node rs1

◆ data on the local file system

● Parallel Runs:

◆ 2 nodes

[rs3, rs1] token ring

[rs3o, rs1o] SOCC

◆ 3 nodes

[rs3, rs1, rs2] token ring

[rs3o, rs1o, rs2o] SOCC

◆ Node 0 (where the driver program runs) was

always the machine rs3
Giuseppe Vitillaro 6 2/12/1999

Benchmarks Execution
◆ Each instance of GAMESS has the working direc-

tory on a file system that is local to the node where

the instance runs

◆ The data on the working directory of the other

nodes are accessed via NFS

◆ Through NFS mounts non local data are accessed

over the same network (Token Ring or SOCC)

where GAMESS exchanges TCGMSG messages

◆ The sequence number of the nodes was always

rs3/rs3o 0

rs1/rs1o 1

rs2/rs2o 2
Giuseppe Vitillaro 7 2/12/1999

Giuseppe Vitillaro 8 2/12/1999

node 0

rs3o
node 1

rs1o
node 2

rs2o

/rs3o/u2 /rs1o/u2 /rs2o/u2

Local File System

NFS Mount via SOCC

Example: TCGMSG on SOCC
File systems view for node rs3o

8 biod 16 nfsd 16 nfsd

Benchmarks Execution

Giuseppe Vitillaro 9 2/12/1999

● Test case used for benchmarks:

HCNO Basis set: TZVP

Symmetry Cs :

● Timing data was collected for the following

tasks:

◆ AO Integral Evaluation (INT)

◆ SCF

◆ Integral Transformation (TRANSF)

◆ Total for the previous tasks (INT+SCF+TRANSF)

◆ Direct-ci (CI)

◆ Total (INT+SCF+TRANSF+CI)

● A script running on rs1 started all the jobs

Benchmarks Description

H
C N O

Giuseppe Vitillaro 10 2/12/1999

● The «test case» is described in the following

GAMESS input file:
time 180
memory 2000000
file ed2 ed2
file ed3 ed3
file ed4 ed4
file ed5 ed5
file ed6 ed6
title
hcno tzv
super off nosym
geometry
0.0 0.347836405 -1.972678252 1 h
0.0 0.0 0.0 6 c
0.0 0.0 2.1864 7 n
0.0 0.0 4.4446 8 o
end
basis
tzv n
d n
1.0 1.2
d n
1.0 0.4
tzv o
d o
1.0 1.2
d o
1.0 0.4
f o
1.0 1.0
tzv c
d c
1.0 1.2
d c
1.0 0.4
tzv h
p h
1.0 1.2
p h
1.0 0.4
end
runtype ci
active
1 to 97 end
direct 22 11 86
enter 1

Benchmarks Description

Giuseppe Vitillaro 11 2/12/1999

● We will present the benchmark results for each

network (TOKEN RING and SOCC)

● T1 : elapsed time serial

TN : elapsed time parallel, N nodes

Speedup : U = T1/TN

Efficiency : e = U/N

Benchmark Results

Giuseppe Vitillaro 12 2/12/1999

CPU Time (seconds)

Task 1 2 3

int 179.60 91.70 61.72

scf 79.38 46.10 33.37

transf 448.25 262.95 184.18

total 707.23 400.76 279.27

ci 556.74 395.39 411.52

total 1263.98 796.15 690.79

Wall Time (seconds)

Task 1 2 3

int 190.56 96.50 65.98

scf 97.07 60.64 49.90

transf 603.75 463.91 679.16

total 891.39 621.05 795.05

ci 713.84 844.34 1144.27

total 1605.23 1465.39 1939.32

TOKEN RING Results

Giuseppe Vitillaro 13 2/12/1999

Wall Speedup

Task 1 2 3

int 1.00 1.97 2.89

scf 1.00 1.60 1.95

transf 1.00 1.30 0.89

total 1.00 1.44 1.12

ci 1.00 0.85 0.62

total 1.00 1.10 0.83

Efficiency

Task 1 2 3

int 1.00 0.99 0.96

scf 1.00 0.80 0.65

transf 1.00 0.65 0.30

total 1.00 0.72 0.37

ci 1.00 0.42 0.21

total 1.00 0.55 0.28

TOKEN RING Results

Giuseppe Vitillaro 14 2/12/1999

1 2 3
Number of Nodes

1

2

3

total
1.00

1.44
1.12

1

2

3

transf
1.00

1.30
0.89

1

2

3

scf
1.00

1.60
1.95

1

2

3

int

Connection: TOKEN RING
DISK I/O : NFS

1.00

1.97

2.89

Wall Speedup

Giuseppe Vitillaro 15 2/12/1999

1 2 3
Number of Nodes

1

2

3

total
1.00 1.10

0.83

1

2

3

ci

Connection: TOKEN RING
Disk I/O : NFS

1.00 0.85
0.62

Wall Speedup

Giuseppe Vitillaro 16 2/12/1999

SOCC Results

●
CPU Time (seconds)

Task 1 2 3

int 179.60 92.05 61.69

scf 79.38 46.01 33.29

transf 448.25 257.91 179.15

total 707.23 395.97 274.13

ci 556.74 382.20 394.26

total 1263.98 778.17 668.39

Wall Time (seconds)

Task 1 2 3

int 190.56 96.50 64.94

scf 97.07 59.17 42.96

transf 603.75 347.00 284.22

total 891.39 502.67 392.11

ci 713.84 685.43 684.92

total 1605.23 1188.10 1077.03

Giuseppe Vitillaro 17 2/12/1999

SOCC Results

Wall Speedup

Task 1 2 3

int 1.00 1.97 2.93

scf 1.00 1.64 2.26

transf 1.00 1.74 2.12

total 1.00 1.77 2.27

ci 1.00 1.04 1.04

total 1.00 1.35 1.49

Efficiency

Task 1 2 3

int 1.00 0.99 0.98

scf 1.00 0.82 0.75

transf 1.00 0.87 0.71

total 1.00 0.89 0.76

ci 1.00 0.52 0.35

total 1.00 0.68 0.50

Giuseppe Vitillaro 18 2/12/1999

1 2 3
Number of Nodes

1

2

3

total
1.00

1.77

2.27

1

2

3

transf
1.00

1.74
2.12

1

2

3

scf
1.00

1.64

2.26

1

2

3

int

Connection: SOCC
DISK I/O : NFS

1.00

1.97

2.93

Wall Speedup

Giuseppe Vitillaro 19 2/12/1999

1 2 3
Number of Nodes

1

2

3

total
1.00

1.35 1.49

1

2

3

ci

Connection: SOCC
Disk I/O : NFS

1.00 1.04 1.04

Wall Speedup

Giuseppe Vitillaro 20 2/12/1999

● NFS plays a heavy role on the performance of

parallel GAMESS:

◆ large files are involved

◆ network I/O is expensive in terms of time

◆ some GAMESS tasks cannot have all the files

present on a local file system

◆ NFS use TCP/IP (through RPC calls) and may not

get full advantage of SOCC bandwidth

◆ NFS use its own buffering scheme that may not be

the best for GAMESS network I/O performance

● Problem: try to find an alternative to NFS for

network I/O that may get more advantage from

SOCC bandwidth

NFS role

Giuseppe Vitillaro 21 2/12/1999

● We chose to use PVM to replace NFS for a

par t i cu la r GAMESS task : INTEGRAL

TRANSFORMATION

● We used PVM in a rather simple way to

implement a Client-Server model for network

I/O

● We wrote a library of primitives that follow the

UNIX scheme of [open read write lseek

close] for Unbuffered Network I/O

● This library completely replaces NFS and uses

only PVM primitives for data transfer

● The PVM FileServer library is written in C

Language

● PVM Standard or IBM ECSEC PVMe may be

used

PVM role

Giuseppe Vitillaro 22 2/12/1999

● The library defines a set of functions that let an

application access local or remote files

● Local Files are accessed using direct standard

unbuffered UNIX calls

● Calls that involve remote files are redirected by

a local FileUser interface (fusr) to a PVM

spawned FileServer (fsrv) that runs on the

remote system.

● The library defines functions to:

◆ Let the program enroll in and leave PVM as a fusr

◆ attach a fsrv on a remote machine

◆ execute [open read write lseek close] on local or

remote files

PVM FileServer Library

PVM FileServer Library

node 0

node 1 node 2

Application
File User fusr

File Server File Server

fsrv fsrv

PVM PVM
PVM FileServer Library C Interface

typedef int NODE;

int fsinit (void);
int fsend (void);

NODE fsattach (const char *hostname);
int fsdetach (NODE node);

int rchdir (NODE node, const char *path);
int runlink (NODE node, const char *path);

int ropen (NODE node, const char *path, int oflag);
int rclose (int handle);
int rread (int handle, char *buf, unsigned int nbytes);
int rwrite (int handle, char *buf, unsigned int nbytes);
long rlseek (int handle, long offset, int whence);

NODE rfnode (int handle);

extern int fuerrno;
Giuseppe Vitillaro 23 2/12/1999

Integral Transformation
● Integral Transformation appears to be the

task more suited to benchmark the PVM

FileServer Library against NFS

● Integral Transformation in parallel GAMESS

involves heavy network I/O through NFS.

◆ The AO integral file («AO Mainfile») is split across
nodes. Each node owns a local partial contribu-
tion.

◆ During the integral sort phase each node reads its
local mainfile and all the remote mainfiles. Each
node select and sorts an ordered partial list of
integrals. These are output to a local «Sortfile».

◆ Each node processes its own sortfile to produce a
local file of «Semitransformed Integrals» («Sec-
ondary Mainfile»). No communication is involved.

◆ The process is repeated to produce local trans-
formed integral file contributions from the «Sec-
ondary Mainfiles».
Giuseppe Vitillaro 24 2/12/1999

Integral Transformation
● The files involved in the Integral

Transformation are very large and two NFS

read phases are involved in the process of

transforming Atomic Integrals to Molecular

Integrals

● A straightforward change in the Integral

Transformation code was needed to use the

PVM FileServer Library, instead of NFS
Giuseppe Vitillaro 25 2/12/1999

Giuseppe Vitillaro 26 2/12/1999

Integral Transformation

AI AI AI

sort

calc

SI

AO Mainfile

Sortfile

Secondary Mainfile
Contribution

SI SI SI

sort

calc

MI

Secondary Mainfile

Sortfile

MO Mainfile

Contributions

NFS read

NFS read

Contribution

Contributions

Local Read

Local Read

Giuseppe Vitillaro 27 2/12/1999

● We have run benchmarks using:

◆ PVM Standard 2.4.1 «virtual circuits» for Token

Ring and SOCC networks

this is the fastest way to use PVM Standard: it

doesn’t involve the pvm daemon for data transfer,

it still uses TCP/IP sockets.

◆ IBM ECSEC PVMe «IMCS synchronous» mode

(mode 2) for SOCC network only

this is the fastest way to use PVMe: it interfaces

directly with the IMCS low-level SOCC protocol

Transformation

Giuseppe Vitillaro 28 2/12/1999

● We will present the benchmarks results for the

two different PVM we used and for Token Ring

and SOCC; we tested the cases of 2 and 3

nodes

● We will compare the results obtained using

NFS and PVM FileServer Library, under the

same conditions

● Again we calculated «Wall Speedup» and

«Efficiency» from execution elapsed time

● For the case of 1 node (serial version) «CPU

Time» and «Wall Time» are always the same

and refer to local I/O done through UNIX calls;

they are presented to compare the results

Transformation

Giuseppe Vitillaro 29 2/12/1999

TOKEN RING Results

CPU Time (seconds)

I/O 1 2 3

NFS 448.25 262.95 184.18

PVM 448.25 267.39 191.71

Wall Time (seconds)

I/O 1 2 3

NFS 603.75 463.91 679.16

PVM 603.75 508.93 516.91

Transformation

Giuseppe Vitillaro 30 2/12/1999

TOKEN RING Results

Wall Speedup

I/O 1 2 3

NFS 1.00 1.30 0.89

PVM 1.00 1.19 1.17

Efficiency

I/O 1 2 3

NFS 1.00 0.65 0.30

PVM 1.00 0.59 0.39

Transformation

Giuseppe Vitillaro 31 2/12/1999

1 2 3
Number of Nodes

1

2

3

PVM
1.00 1.19 1.17

1

2

3

NFS

Connection: TOKEN RING
Integral Transformation

1.00
1.30

0.89

Wall Speedup

Giuseppe Vitillaro 32 2/12/1999

SOCC Results

CPU Time (seconds)

I/O 1 2 3

NFS 448.25 257.91 179.15

PVM 448.25 266.37 188.35

PVMe 448.25 256.91 182.05

Wall Time (seconds)

I/O 1 2 3

NFS 603.75 347.00 284.22

PVM 603.75 444.46 405.91

PVMe 603.75 341.99 262.92

Transformation

Giuseppe Vitillaro 33 2/12/1999

SOCC Results

Wall Speedup

I/O 1 2 3

NFS 1.00 1.74 2.12

PVM 1.00 1.36 1.49

PVMe 1.00 1.77 2.30

Efficiency

I/O 1 2 3

NFS 1.00 0.87 0.71

PVM 1.00 0.68 0.50

PVMe 1.00 0.88 0.77

Transformation

Giuseppe Vitillaro 34 2/12/1999

1 2 3
Number of Nodes

1

2

3

PVMe
1.00

1.77

2.30

1

2

3

PVM
1.00

1.36 1.49

1

2

3

NFS

Connection: SOCC
Integral Transformation

1.00

1.74
2.12

Wall Speedup

Giuseppe Vitillaro 35 2/12/1999

Scf

● Significant increase in speedup when going

from 2 to 3 nodes under SOCC compared to

Token Ring.

● Reflects gathering of Fock matrix over a

bandwidth which scales (SOCC) compared

with a constant bandwidth (Token Ring).

Wall Speedup

Connection 2 3

Token Ring 1.60 1.95

SOCC 1.64 2.26

Conclusions

Giuseppe Vitillaro 36 2/12/1999

Integral Transformation

● The bad Token Ring perfomance seems again

related with a constant and narrow bandwidth.

● The SOCC PVMe case is the best perfoming:

a better use of the SOCC bandwidth is

achieved with PVMe.

Wall Speedup

Connection 2 3

Token Ring 1.30 0.89

SOCC NFS 1.74 2.12

SOCC PVMe 1.77 2.30

Conclusions

Giuseppe Vitillaro 37 2/12/1999

Direct-CI

● Direct-CI is the worst perfoming GAMESS

task.

● Investigation has to be done on the way Direct-

CI is parallelized.

● Perfomance on SOCC are better than on

Token Ring.

Wall Speedup

Connection 2 3

Token Ring 0.85 0.62

SOCC 1.04 1.04

Conclusions

Giuseppe Vitillaro 38 2/12/1999

INT+SCF+TRANSF

INT+SCF+TRANSF+CI

Wall Speedup

Connection 2 3

Token Ring 1.44 1.12

SOCC NFS 1.77 2.27

SOCC PVMe 1.79 2.40

Wall Speedup

Connection 2 3

Token Ring 1.10 0.83

SOCC NFS 1.35 1.49

SOCC PVMe 1.35 1.52

Conclusions

