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1. INTRODUCTION

In recent years the study of set-valued functions has been developed exten-
sively by many authors, with applications to mathematical economics and
control theory; see Refs. [5, 11, 15, 16]. In those papers, three approaches
can be distinguished according to whether the range space (values of set-
valued functions) is #”, a Banach space, or a locally convex topological
space. The purpose of this paper is to establish properties of Aumann’s
integrals of set-valued functions, F: T— 2%, whose values are nonempty
subsets of a real separable reflexive Banach-space X, and to continue the
work due to Aumann [2] and Datko [7-8].

While previous analysis has always treated the case of special finite
nonatomic measure spaces, we focus here on the case of general o-finite
nonatomic measure spaces. In this last situation, moreover, the analogous
results we establish hold under less stringent hypotheses.

More precisely, all through the paper we consider a measure space
(T, Z, 1), where u is supposed to be positive, nonatomic and o-finite, and we
give the following statements.

RESULT 1. Let F: T— 2% be a set-valued function. Then the closure of
the Aumann integral of F, cl [, F(t) du(t), is convex.

This first theorem is a generalization of analogous results due to Richter
[14] and to Aumann [2] in the finite:dimensional case.

RESULT 2 (REPRESENTATION THEOREM). We assume that X possesses
the Souslin operation and that F: T — 2 is a set-valued function of Souslin
type such that

j F(t) du(t) # @.

* This paper has, been carried out within the Gruppo Nazionale per I’Analisi Funzionale e
le sue Applicazioni del Consiglio Nazionale delle Ricerche.
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Then we have
(1)l [r F(0) du(t) = {x € X: x'(x) < [ s(x', F(2)) du(t), x' € X'};
@) G, [ F@) du(t) = [ s(x', F() du(®), x' € X5 .
(3) cl [, F(t) du(t) = cl [, co F(¢) du(r).

In 1974 Artstein established a representation theorem in the case that
X=%#” and T= [0, T] (cf. Lemma 2.2 of [1]). It should be noted that our
version of the theorem includes Artstein’s earlier result in this direction.
Furthermore, the equality (3), which extends Theorem 3 of Aumann [2] to
the infinite-dimensional case, is best possible even if X = .%?, as we show in
Remark (1) of Corollary 3.3.

RESULT 3 (LEBESGUE’S DOMINATED CONVERGENCE THEOREM). Let T
have the Souslin operation and let (F,), be a sequence of set-valued
Junctions of Souslin type. We suppose that '

(@) there exists g€ L'(T), g >0, such that ||F,(t)| < g(t), for tET,
n=1,2,..; : .

(B) lim, F,(f)=F(t) for tE T, in terms of Definition 2.4.

Then F is a set-valued function of Souslin type which maps T into nonempty
closed bounded convex subsets of X and satisfies

lim j F(t) du(t) = j F(O) du(t).

This theorem is an extension of Theorem 5 of Aumann [2] and ‘makes use
of a convergence which seems natural in the infinite-dimensional case (cf.
Definition 2.4). More precisely, if F,(f) converges ‘toiF(t) in the sense of
Kuratowski, as imposed by Aumann in his Theorem 5, then F,(t) must
converge to F(¢t) in our topology. The converse to this statement is not true.

As Debreu observed in [9], from the viewpoint of economic interpretation,
Aumann’s assumption that the set of agents is an, analytic set seems more
artificial than his requirement that it is a measure space. For this reason, in
[9] Debreu studies the integration of measurable set-valued functions whose
values are nonempty compact convex subsets of a real Banach space.

According to Debreu’s point of view, it seems of interest to establish the
above Results 1, 2 and 3 for measurable closed-valued functions defined on
(T, X, u), where X' is now supposed to be only u-complete instead of having
the Souslin operation. It is not difficult to show that the above results remain
true in this new, setting. A presentation of this fact will appear in the proofs
of Theorem 3.2’ and its Corollary 3.3’, and in the note of Section 3. Also in
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this - case, the representation theorem can be used to reveal some important
properties of Aumann’s integration, which themselves contain some well-
known theorems in the literature (see, for instance, Datko [7, 8]).

2. PRELIMINARIES

Let X=(X,|-|]) be a real separable reflexive Banach space and
X' = (X", ]|-]|) the topological dual of X. Let S’ denote the surface of the unit
ball in X". i

Moreover, let (T, Z,u) be an arbitrary measure space, where X is a o-
algebra of subsets of 7 and u is a positive, o-finite, nonatomic measure.
L'(T, X) denotes the usual Banach space of functions y: T— X, where the
norm is defined in the usual manner (see [10]). If X =%, then L'(T, %)
will be denoted by L'(T). Let 2* be the family of all nonempty subsets of X.

DEFINITION 2.1. A set-valued function F: T— 2% is called measurable if
the set F~(U)= {tE T: F¢)N U+ @&} is measurable whenever Uc X is
open. We define the graph of F, denoted Gr(F), by Gr(F)=
{(t, x) ET X X: x € F(t)}. A selector of F is a function o: T— X such that
a(t) EF(¢t), for t€T. By (F) we mean the family of all measurable
selectors of F and by #(F) the set . (F)NL'(T, X).

DEFINITION 2.2. If a topological space P is separable and can be
metrised so that it becomes a complete metric space, then P is said to be a
Polish space. A set-valued function F: T— 2% is said to be of Souslin type if
there exists a Polish space P, a measurable set-valued function Q: T - 2”
with closed values and a continuous mapping ¢: P—X such that
F(t) = ¢(2(2)), for t€ T.

For a comprehensive survey of this topic, as well as other related topics,
see [5, 11, 13, 15, 16].

DEFINITION 2,3. Let 4 be a nonempty subset of X. We define
s(x’,A) =sup, ., x'(x), for x’ € X'. The function s(-,4): X' - #,,, where
F=F U {+00}, is said to be the support function of A.

DEFINITION 2.4. Let (4,), be a given sequence in 2*. We define its
lower limit by '

lim4,={x € X:x'(x)<lims(x’,4,),x' € X'}

and its upper limit by
lim4, = {x € X:x'(x) < lims(x’,4,), x' € X"}.
n n
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The sequence (4,), is said to be convergent to A if lim, 4, =1im,4,=A,
and we put lim, 4, =4.

Note that lim, 4, and lim, 4, are two closed convex subsets of X and,
furthermore, lim, 4, < lim, 4,,.

Now, let (4,), be a fixed equibounded sequence in 2*; in other words,
there exists M > 0 such that M > ||4, || = sup,, [ x|, for n=1,2,...

Remarks. (1) Since (4,), is equibounded, it is clear that p(x’)=
lim,, s(x',4,), x' €X', is a continuous sublinear functional. Thus, from
Theorem II-16 of [5] it follows that p is the support function of the
nonempty closed bounded convex set lim, 4,. Therefore, we get

s(x',lim4,)=lims(x',4,), x €X',
n n

and, if lim, 4, #+ @, then

s(x',lim4,) <lims(x',4,), x' €X'
n n

~_ (2) We now prove that lim,4,=2,c0 UZ_,4,, The inclusion
lim, 4, (N2, 0 Up_,4,, is clear. To show the converse inclusion it is
sufficient to note that for n =1, 2,... we have

[ee)
sup s(x’,4,,)=s (x',c_o U A,,,), x'eX’;

m>n m=n

in other words the only assertion which is not immediately evident is that

[oo]
s (x’,% U A,,,) < sup s(x,4,), x' €X'
m=n m>n

In order to see this last inequality, we assume, by contradiction, that there
exist n and x’ such that s (x’,c0 Uy_,4,,) > sup,,s, s(x’, 4,,). Then we can
choose x,€c0o Up_,4,, with x,=X9_4, Ymp 420, X1 A=1,
VYm, €Ay, mi2n (i= l,.., q), such that x’(x,) > sup,, , s(x’, 4,,). Finally, it
follows that x'(xo)=39_, A,x' (¥ )< X0 1 AiS(X's Ay ) SUPpsn S(, A1) <
x'(x,), which is absurd. '

(3) Letv={x]}2, be a countable dense subset of S’. We shall prove
that

s

limd,= () {x € X: x/(x) <lims(x!,4,)}
n n

=1

8

limA4,= () {x € X:x/(x) <lims(x},4,)}.

1

We begin by showing the first equality.
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From Definition 2.4 it follows that lim, 4, (2, {xEX: x/(x)<
lim, s(x;,A4,)}. Now let x€X be such that x/(x)<lim,s(x{,4,), for
i=1,2,.. Let x’ €X' and £¢>0 be fixed We may assume |x'||> 0;
otherwise there is nothing to prove. We now consider x; € v such that
"/l Il = x| < &/llx"|| (M + | x[)). Since we have

Is(x" || x5 A,) = sCe/s AN XN xf — x| - (| 4,41l < €M/ M + | x]]),
n=1,2,..,
we can derive that

|x'|| lim s(x], 4,) < lim s(x’, 4,,) + eM/(M + || x||).
n n

Therefore, we get
X () <[] %7 Ce) + e /(M + D) < x| lim s (a7 4,)

+ &l x]l/(M + | x]) < lim s(x’, 4,) + &

Since ¢ > 0 is arbitrary, it follows that x’(x) < lim, s(x’, 4,); this holds for
all x’ € X', so x € lim, 4,. Similarly, we can prove the second equality.

(4) Let v be as in Remark (3). The family of nonempty closed
bounded convex subsets of X will be denoted by co . Z(X). Following
Definition 5 of [7] we consider the distance function

|s(x;,A)—s(x;, B)|
1+ |s(x;,4) —s(x],B)

1
d,4,B)= > 5
i=1

defined on co #°(X) X co Z(X).

We now assume that the fixed sequence (4,), is in co Z(X). As Datko
observed in Remark 2 of [7], one can prove that the sequence (4,),
converges in terms of the metric d, to a set 4 of co .#(X) if and only if

lim s(x],A4,) =s(x],A4), for i=1,2,..

On account of Remark (1) it follows that lim, 4, =4 if and only if

lims(x’,4,)=s(x’, 4), for x'e€X'.

Therefore, by Remark (3), lim, s(x’, 4,) = s(x’, 4), for x’ € X', if and only
if lim,s(x/,4,)=s(x],4), i=1,2,., for every countable dense subset
v={x/}2, of S’, in other words, lim,4,=4 if and only if
lim, d,(4,,A4)=0, for every v.
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DEFINITION 2.5. The o-algebra X admits the Souslin operation s/ if
s/ (X) = Z. Further details on this topic can be found in [12, 13].

DEFINITION 2.6. A sequence (F,),, F,: T— 2%, is said to be integrably
bounded if there exists g € L'(T), g >0, such that ||F,(¢)| < g(¢), for tE T.

DEFINITION 2.7. Let F: T—2¥ be a set-valued function. The Aumann
integral of F is defined as

| (@) du() =

j o(t) du(t): 6 € L (F)!.

Instead of [, F(t)du(t), [;o(f)du(t), etc., we shall write [ F(r)du(f),
[ o(t) du(t), etc.

No confusion will arise if we mean “for almost every” when we write
“for” t€ T.

3. THE REPRESENTATION THEOREM AND SOME APPLICATIONS
We begin the present section with the following

THEOREM 3.1. Let F: T—2* a set-valued function. Then, cl [ F(t) du(t)
is a convex subset of X.

Proof. Without loss of generality we can assume that cl [ F(f) du(f)
contains at least two points. We first prove that if r,, r, € [ F(t) du(t) then,
for every €>0 and every a with 0<a< 1, there exists a point
r € [ F(¢) du(t) such that ||r —ar, — (1 —a) r,|| < &

We now fix r,,r,, &€ and a as above. Therefore, there exist a,, 0, € & (F)
such that r,=[o0,(t)du(t), r,=0,(t)du(t). We denote by (4,,),
and (4,,), two sequences of integrable step functions such that
SUPgex [r 04(8) — Gia(t)l du(t) < ¢/3, for every n>N=N(/3), i=1,2.
Thus, it is no restriction of generality to write ¢,,=Y}", XsXij i=1,2,
where S;€X, §;NS,=@,j#h,j,h=.1,2,.,M.

By the corollary of [10,p. 28], ¢ has the Darboux property; in other
words, there exist R,..., R, € Z, Ry S;,uR;))=au(S;), R,"R,=@,j+h,
Jh=1,2,.,M. Put E= )}, R;, E° = T— E; thus we have

af 81,(0) du(t) =] $1,(0) du(t),

(1=a) [ 62,0 du®)= | $:,0)du).
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Furthermore, if 0 =;0,+ Xz.0,, then 0 € L(F) and r=[a(t)du(t) €
{ F(¢) du(¢). Finally, we get

||r—ar,—(1——a)r2||<{

[ 0@ adu® — [ ¢1,(0)duo)
+[ 1) ) —a [ 0,0 )|

"

Lc o(t) du(t) - Lc B2a(t) du(t)
+Lymo@m—u—@j%@@m“

< L llo,(t) — $14()ll Au(?) + @ j 16,,(8) — 0,0l duu(2)
+[ 1os) = 620 a0 + (1= )

[ 162000 = 02O de)
<e¢/3+ag/3+¢€/3+(1—a)e/3=¢,

which is the desired conclusion.

We are now able to prove that cl [ F(¢) du(t) is convex. For this purpose,
let us fix r,r,€cl[F(t)du(t) and 0<a < 1. Corresponding to each
n=1,2,., there exist r,,,r,, € [ F(t)du(t) such that |r,—r,| <1/2n,
i=1,2. As we showed above, we can choose 7, € [ F(t) du(¢) such that

”Fn—arln_ (1 _a)an“ < 1/2’1.
Finally, we have, for n =1, 2,..,,

”Fn—arl_(l_a)r2||<”fn__arln_(l_a)r2n||+a”rln_r1”

+ (1 =a)||ry,—rall <1/

in other words, the sequence (7,), in | F(¢) du(¢) converges to ar, + (1 —a)r,
and thus the theorem is proved.

Remark. This theorem was established in Euclidean spaces by Richter
[14] and, subsequently, by Aumann [2]. Furthermore, although the proof we
present here is completely analogous to one due to Datko in [6], our
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statement contains Theorem 1 of [6] as well as the last theorem in Section 5
of [7]. We point out that the measure we consider is possibly infinite.
The next theorem will be of importance for the coming applications.

THEOREM 3.2 (REPRESENTATION THEOREM). We suppose that X has the
Souslin operation. Let F:T - 2¥ be a set-valued Junction of Souslin type
such that [ F(t) du(t) + @. Then we have

cl j F(O) du(t) = |x € X: x'(x) < j s(x', F(t)) du(?), x ex'!,

s (x’, f F() d,u(t)) = j s(x', F(£)) du(?).

Proof.  For each x' € X' we set s(x’, t) = s(x', F(t)), for t € T. In view of
Theorem 7 in [13], the function s(x’, -): T— Z,, is measurable, since it is
the supremum of a sequence of measurable functions.

Obviously, there exists some ¢ € ¥(F) and the function g(t)=|a(@)|, for
t€ T, is such that g€ L'(T), g >0 and

—x' || g(¢) < s(x', 1), forallx' € X'. +)

Hence, s(x’, -) is integrable, with finite or +oo integral. Thus, we can define
s: X' > # by

s(x") =j s(x’, 1) du(e), x'eX'.

It is clear that s is a sublinear functional. We now prove that s is lower
_ semicontinuous.

For this purpose, we fix x’ € X’ and a sequence (x’), in X’ such that
lim, x, = x’. By the lower semicontinuity of support functions it follows that
s(x’, 1) <lim,, s(x,, t), for ¢ € T. Furthermore, since ||x.|| <M, n=1,2,...,
for some M >0, from (+) we have —Mg(t) < s(x’,¢), for n=1,2,.. and
te T. Hence, in view of Fatou’s Lemma, the desired inequality

s(') < [ tim (e, £) due) < lim [ s(xy, ) diu(r) = lim s(x)

holds.

Note that 5(0) = 0. Therefore, on account of Theorem II-16 in [5] and the
reflexivity of X, there exists a unique subset H of X such that H is nonempty,
closed and convex .and s(x’) = s(x’, H) holds for each x’ € X’. In addition,
H={xeX:x'(x)<s(x'), x' € X"}.

We now show that s(x') = s(x’, [ F(¢) du()) for every x’ € X'. We first
observe that, if r= [ o(f)du(t), where 6 € ¥ (F), then for all x’' € X' it
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follows that x'(r) = [ x’(a(t)) du(t) < [ s(x’, t) du(t) = s(x"); in other words,
s(x’, [ F(t) du(t)) < s(x'). It remains to establish the reverse inequality. Let
(T,), be a fixed sequence in X such that 0 < u(T,)< 4o, T,NT, =0,
nem, n,m=1,2,..,J%,T,=T. We consider the sequence (f,,), of
functions f,,: T— #* defined by f,,(¢)=1/m2"w(T,), t€T,, n=1,2,..,
where [f,(¢)du(t)=1/m, m=1,2,.. We now choose x’'E X' Set
R={te€T:s(x',t)<+oo} and S=T—R; we define the sequence of
measurable functions ¢,,: T > #, ¢,,(t) =s(x',t) —f.(t), tER, ¢,(t)=m,
t€S, m=1,2,... For each m=1, 2,..., by construction there holds

—¢(O) %' ~/u() <)) <s(x', 1), for (€T,
[ n®)du®)= [ (s, 1) ~f(t)] duc) + mu(S).

Thus we have

lim [ 6,0 du(y = |°&> T #O)=0

+00, if  u(S)>0;

in other words, in both cases lim,, | ¢,,(¢) du(f) = s(x").

Let m be a fixed integer. Put G, (f) = {x € F(¢): x'(x) > ¢,,(t)}; we note
that G,,(t) # @, since ¢,,(t) < s(x’, t), for t € T. Set H,(t) = {x € X: x'(x) >
¢,.(t)}, for tE€T; it is evident that Gr(H,)€E X ® Z(X). Furthermore,
on account of Corollary 5.4 in [12], Gr(F) belongs to &/ (£ ® #(X)). From
the equality Gr(G,)=Gr(F)NGr(H,), we deduce that Gr(G,)€E
o (£ ® #(X)), and by the same corollary it follows that G, is of Souslin
type.

In view of Theorem 7 in [13], there exists a measurable selector y: T—» X
of G,. For every g=1,2,., we consider the measurable sets
R,,={tET,:|lw@®)<q/2"«(T,)} and S,,=T,—R,,, n=1,2,.. Let
Rq = U;r.o=l Rn,q and Sq = U?:o:l Sn,q'

It is clear that T=R,US, and R,NS, =@, T= U,R,, R,SR,
@=0,8, S;28;41» ¢=1,2,... On account of requirements, we can
choose 0 € &(F). Finally, we define n,(t)=w(t), tER, , n,)=0(),
t€S, . nq=12,., and again fix ¢ =1, 2,.... Because 7, € S (F) and

i@l do=3 [ voldo+ 3 | 1ol
<[ qauoy2ur)+ X [ lo0)du)

=g+ o] du(v)
we get n, € £(F); in other words, r, = [ n,(t) du(t) € | F(¢) du(t).



AUMANN INTEGRALS 95

In addition, we have
(v fFO @) >0 = 3 [ w0 auc)
- J,, OO0+ > J, xeo
= jkqx'(w(t» du(t) + jsqx'(a(t)) du(?)

>[ 8n)du(0)+ [ x'(0(0)) du(t),

where the last inequality is true since y € .%(G,). Since g=1,2,.. is
arbitrary, we obtain

s ([ FO duo) > tim [ [ nu+[ 5o dﬂ(t)J

= [ 6(®) du(o).

Observing that this inequality holds for each m = 1, 2,..., we conclude that
s (x’, [ F@) du(t)) > s(x').
It is now evident, from what has been proved above, that
s (x’, [ Fa) d,u(t)) =s(x') = [ s', F@) du(t), ~ forall x' € X".

In view of Theorem 3.1 and the Hahn-Banach Theorem it follows finally
that cl [, F(t) du(t) = H.

THEOREM 3.2'. We assume that X is u-complete. Let F be a measurable
set-valued function from T into nonempty closed subsets of X such that
J F(t) du(t) # ¢. Then the conclusion of Theorem 3.2 is still true.

Proof.  On account of Example (i) and Theorem 7 in [13], the set-valued
function F has a Castaing representation. Under our requirements, this
property is equivalent to the measurability of F as well as to the fact that
Gr(F) € £ ® Z(X), in view of Theorem III-30 in [5].

Following the notation we used in the proof of Theorem 3.2, we observe
that in the present case the set-valued function G,, maps T into nonempty
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closed subsets of X. Replacing Corollary 5.4 of [12] and Theorem 7 of [13]
by Theorem III-30 of [5], we obtain the measurability of G, and the
existence of a measurable selector v of G,,. The remaining part of the proof
is the same as for Theorem 3.2.

Remark. Theorem 3.2 is inspired by the representation theorem of
Artstein [1, Lemma 2.2] in the case that X = .#°. However, Artstein’s result
is a special case of our representation theorem.

COROLLARY 3.3. Under the assumptions of Theorem 3.2, we have the
equality

cl j F(t) du(t) = cl j o F(t) du(?).

Proof. From the corollary of Theorem4 in [13] we see that
(co F)(t)=co(F(t)), t €T, is a set-valued function of Souslin type and, thus,
by the representation Theorem 3.2, it is easily seen that

cl f F(t)du(t) = Sx € X: x'(x) <f s(x', F(t)) du(t), x' € X’ g

xEX:x'(x) QJ s(x',co F(r)) du(t), x' EX’(

=cl j o F(f) du(e).

COROLLARY 3.3'. The assumptions of Theorem 3.2’ imply that

cl j F()du(t) =l j o F(t) du(?).

Proof. In view of Theorem III-40 in [5], co F is measurable and the
equality follows from Theorem 3.2’, as shown in the proof of the previous
corollary.

Remark (1). Note that the statements of Corollaries 3.3 and 3.3’ are
best possible. Indeed, even in the finite-dimensional case, [ co F(t) du(t) need
not be closed and, furthermore, it is evident that in general [ F(f) du(r) +
f co F(t)du(f). We next give a slight modification of an example due to
Aumann [2] which can be employed to show the first fact. .

Let T=]0, 1], & be the Lebesgue o-algebra and u the Lebesgue measure.
Define F: T 2%’ by setting F(¢) = {(0,0), (1 —1¢)/t,t/(1—1))}, tET.
Obviously, F(t)=F(t), t € T, and F has a Castaing representation. Thus, F
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is measurable as well as of Souslin type, by the same arguments used in the
previous proofs. Furthermore, the hypotheses of Theorem 3.2 are fulfilled.
We now observe that a: T— %2 is a measurable selector of o F if and only
if '

o) = (05107

t € T, where A: T— [0, 1] is measurable.

In addition, if (x,y)€ [co F(t)du(t) and if x=0 (y= 0), then y=0
(x=0). For each n=1,2,.., we consider An=X{1/an.1/2m and let o, be the
corresponding measurable selector of co F. Thus, we obtain

) . 4n —1
lim J 0,(t) du(t) =lim (log 2 1/4n,log 5 — —

1 /4n) — (log 2, 0).

Hence (log 2, 0) & [ €6 F(t) du(t), and this completes the example.

Remark (2). Corollary 3.3 extends an analogous result of Aumann |2,
Theorem 3] to the infinite-dimensional case.

Note. In the remaining part of this section we consider only set-valued
functions of Souslin type which are defined on (7, Z, 1), and we assume that
s/ (Z)=Z. Obviously, by the same arguments used in the proofs of
Theorem 3.2’ and Corollary 3.3, all the next results can also be established
for measurable closed-valued functions defined on (7, X, u). We stress the
fact, however, that the requirement that &/ (&) =2 is always replaced by the
assumption that X is u-complete.

THEOREM 3.4. Let F:T—2* be an integrably bounded set-valued
function of Souslin type. Then the set [ co F(t) du(t) is closed.

Proof. Let r € cl [ co F(t) du(t) and (0,), be a sequence in & (co F) such
that r=1lim, [ g,(f) du(f). We first observe that Definition 2.6 implies
o, (0l <g(), for tET, n=1,2,..Then, K= {0,},", c L'(T, X) satisfies
the hypotheses of Theorem 1, part I-b in [4]; in other words, K is relatively
weakly compact in L'(T, X). Therefore, without loss of generality we may
assume that the whole original sequence (0,), converges weakly to some
o € L'(T, X). In view of the Mazur Theorem there exists a suitable sequence
(w,), of convex combinations of (0,), which converges strongly to ¢ in
L'(T, X). It is now evident that, by choosing subsequences if necessary, we
may claim that lim, v, () = o(¢), for tE€T, hence a(t) € co F(t), for tE€T.
Since the operator [:L'(T,X)—X is strongly continuous and, therefore,
weakly continuous, it follows that r=lim, [ 0,(¢) du(t) = | o(¢) du(t). The
last equality concludes the proof.
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Remark. Under the assumptions of Theorem 3.4, it is also immediate
from Corollary 3.3 that cl [ F(¢) du(t) = [ co F(¢) du(t). Thus on account of
the previous note it follows that this statement contains the main theorem of
[8] as a special case. It is to be noted that the measure we consider is
possibly infinite.

THEOREM 3.5. Let (F,),, F,:T—2*, n=1,2,., be an integrably
bounded sequence of set-valued functions of Souslin type. Then, the following
inclusion hold:

(a) [lim, F,(f) du(t) < lim,, [ F,(t) du(?),
(b) [lim, F,(¢) du(t) > Tim, [ F,(r) du(?).

Proof. (a) By setting F(¢t)=lim, F,(¢t), for t€ T, we obtain. from
Definition 2.4 and Remark (2) of Section2 that F(f)={x € X:x'(x) <
lim, s(x’, F,(2)), x’ €X'} = N2 {xEX: x{(x) < lim, s(x], F,(¢))}, for tET,
where {x]}*, is a fixed countable dense subset of S’.

Therefore, F(¢) is a closed bounded convex subset of X, for t € T. We may
assume that F(t) #+ @, for ¢t € T; otherwise there is nothing to prove. Since F
is a countable intersection of set-valued functions of Souslin type, then on
account of Corollary 2 of Section 3 in [13] we claim that also F is of the
same type. In view of Fatou’s Lemma we have

[ lim s(x', F,(0)) du(t) < Lim [ s(x', F, (1)) du(0)

and, hence, by Theorems 3.4 and 3.2 and Definition 2.4 it follows that

j F(t) du(t) = cl j F()du(t) = |x € X: x'(x) < j s(x', F(2)) du(t), x' € X’ﬁ

c

x€X:x’(x)<Jﬁ_rr_1s(x’,F,,(t)) du(t), x' EX’%
c 3x€X:x’(x)<1i_n_1js(x’ F, () du(t), x’ EX’g

=lim | F,(0) du(0).

(b) Letting G(t) =1lim, F,(¢), from Definition 2.4 and Remark (3) of
Section2 we see that G(f)= {x € X: x'(x) < lim, s(x', F, (1)), x' €X'} =
Ne,c0 UX_, F,(t); in other words, G(f) is a nonempty closed bounded
convex subset of X, for t€ T. On account of Theorem 1, corollary of
Theorem 4 and Corollary 2 of Theorem 2 in [13], we may claim that G is of
Souslin type.
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" Using Theorems 3.4 and 3.2, Fatou’s Lemma and Definition 2.4, we get

J G(¢) du(t) = cl j G(t) du(t) =

X € X: x'(x) <J s(x’, G(t)) du(t), x' € X’% 4

= Sx€X:x’(x)<JH;rﬁs(x’,F,,(t)) du(t), x’ EX’%

|

> )x€ Xex'(x) <Tim [ s(x', Fy(0)) du(e), ' € X'€

?

= Tim [ F,(0) du(t).

Thus the theorem is proved.

COROLLARY 3.6 (LEBESGUE’S DOMINATED CONVERGENCE THEOREM).
Let (F,), be an integrably bounded . sequence of set-valued functions of
Souslin type. If lim, F,(t) = F(t), for t € T, then F is a set-valued function of
Souslin type which maps T into nonempty closed bounded convex subsets of
X and’is such that o :

lim j F, () du(t) = j F(r)du(t).

Remark. Corollary 3.6 is an extension of Theorem 5 in [2] and makes
use of a convergence which seems rather natural in the infinite-dimensional
case. In particular, when X =.%°, Corollary 3.6 contains Theorem 5 of [2]
as a special case. In order to see this, we denote by Lim 4, the Kuratowski
limit of a sequence (4,),, where edch 4, is a subset of .#”, and by h the
Hausdorff metric in ¢0 .7'(#7).

We next prove that if (F,),, F,: T— 2%, is a sequence of set-valued
functions satisfying the assumptions of Theorem 5 in (2], then (F,), verifies
the hypotheses of Corollary 3.6. In addition, the statement of Corollary 3.6
implies the conclusion of Theorem 5 by Aumann.

It is evident that in order to see that (F,), fulfills the requirements of
Corollary 3.6 we need only show that Lim F, () = F(¢), for ¢t € T, implies
lim, F,(t)=F(t), for t € T. Let t € T be fixed. On account of Lemma 1.6 in
[3] it follows that if Lim F,(¢) = F(t), then Lim €6 F,(t) = co F(¢). We stress
the fact, however, that the converse of this implication need not be true.
Now, by Corollary 1.2 and Lemma 1.4 of [3] we have Lim co F,(t) =co F(z)
if and only if lim, h(co F,(t), <o F(¢)) = 0. From Remark (1) of Section 2 we
see “that lim, s(x’,To F,(f)) =s(x',co F(t)), x' € #”, if and only if
lim,co F;({)=co F(t). In view of Lemma 1.2(iii) in [3] we have
lim, h(co F,(t),co F())=0 if and only if lim,co F,(t)=co F(¢). Thus,
Corollary 3.6 allows us to claim that lim, [ €0 F,(¢) du(f) = [ <o F(t) du(?).
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By the arguments used above, we are now able to show that the last
equality is equivalent to the assertion of Theorem 5 in [2]. In fact, the
following implications hold:

lim [ @0 F (1) du(t) = | & F(2) du(t)
< lim h ( (<0 Fy0) dute), [ & Flo) d,u(t)) —0
< Lim j o F, () du(t) = j o F(t) du(r)

< Limcl j F(t)du(r)=cl j F(t) du(t) = j F(t) du(),

where the last equality is a consequence of the fact that F(¢) = Lim F,(¢), for
tET, is a closed-valued function and of Theorem 4 in [2]. Now, from a
well-known property of the Kuratowski limit it follows that

Lim J F,(t) du(f) = Lim cl j F, () du(t) = j F(t) du(p).

In other words, we have proved that Kuratowski convergence strictly implies
the convergence we introduced in Definition 2.4, while the conclusion of
Corollary 3.6 is equivalent to that of Theorem 5 due to Aumann [2].

T
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