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LogicalLogical PropositionsPropositions and and SetsSetsLogicalLogical PropositionsPropositions and and SetsSets
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LogicalLogical PropositionsPropositions and and SetsSetsLogicalLogical PropositionsPropositions and and SetsSets
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PropositionalPropositional CalculusCalculusPropositionalPropositional CalculusCalculus
Two proposition are 
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Propositions and Classical LogicPropositions and Classical LogicPropositions and Classical LogicPropositions and Classical Logic

If p the q qp ⇒

⇒

p sufficient condition for q

if q then p pq ⇒ p necessary condition for q

p  d ffi i t 
p if and only if (iff) q qp ⇔ p necessary and sufficient 

condition for q: they are 
equivalent

The propositions p and q are equivalent if and only if each one imply 
the other

qp ⇒ pq ⇒

i.e. if  and only if they satisfy the same “truth table” qp =
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AND OR IMPLY XOR
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““NaiveNaive” Set ” Set TheoryTheoryNaiveNaive  Set  Set TheoryTheory
Two sets are “equal” if and 
only if they contain the same only if they contain the same 
elements, i.e., if and only if
each one contains the other )()()( ABBABA ⊂∧⊂⇔=

ccC BABA UI ⊂)(
BAxBAx C II ∉⇒∈ )(

)()( BxAxBAx ∉∨∉⇒∉ I BABA UI ⊂)()()(
)()()()( cc BxAxBxAx ∈∨∈⇒∉∨∉

cccc BAxBxAx U∈⇒∈∨∈ )()(

)()( cccc BxAxBAx ∈∨∈⇒∪∈
)()()()( BxAxBxAx cc ∉∨∉⇒∈∨∈

BAxBxAx I∉⇒∉∨∉ )()(

ccc BABA )( IU ⊂
BAxBxAx I∉⇒∉∨∉ )()(

cBAxBAx )( ∩∈⇒∉ I

ccc BABA UI =)(
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De Morgan’s De Morgan’s LawsLawsDe Morgan s De Morgan s LawsLaws

ccc BABA UI )( ccc BABA IU )(ccc BABA UI =)( ccc BABA IU =)(

qpqp ¬∨¬=∧¬ )( qpqp ¬∧¬=∨¬ )(

Isomorphic and Dual laws: they have the very same shape

Different concepts with the same shape, following 
the same rules, computed in the same waythe same rules, computed in the same way
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How to use SetsHow to use SetsHow to use SetsHow to use Sets
}},{},{{),( baaba = An ordered couple of elements of two sets A 

and B
}},{},{{),(

and B

)}()(|){( BbAabaBA ∈∧∈=× )}()(|),{( BbAabaBA ∈∧∈×

The set of all ordered couples:  the cartesian
product of two sets A and Bp

A simple idea to build new sets from already 
i i  existing sets
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BinaryBinary RelationsRelationsBinaryBinary RelationsRelations
A binary relation R between the sets A and B is a BAR ×⊂subset of the cartesian product AxB.

The set A is defined domain and the set B 
d i

aRbRba   ),( ∈

BAR ×⊂

codomain

If domain and codomain are the same set X, the 
binary relation may assume interesting properties:

XXR ×⊂
binary relation may assume interesting properties:

reflexive xRxXx :∈∀

symmetric

antisymmetric

yRxxRy ⇒

yxyRxxRy =⇒∧ )()(antisymmetric

transitive

l

yyy )()(

xRzyRzxRy ⇒∧ )()(

)()( RRX∀total )()(:, yRxxRyXyx ∨∈∀
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Order and Equivalence RelationsOrder and Equivalence RelationsOrder and Equivalence RelationsOrder and Equivalence Relations
A binary relation reflexive  antisymmetric and xx:Xx ≤∈∀A binary relation reflexive, antisymmetric and
transitive is called a partial order, and usually is 
denoted with the “less or equal” symbol.

zxz)(yy)(x
yxx)(yy)(x

xx:Xx

≤⇒≤∧≤
=⇒≤∧≤

≤∈∀

If it is also total, is simply called an order
relation or a total order.

zxz)(yy)(x ≤⇒≤∧≤

)()(:, xyyxXyx ≤∨≤∈∀

If each non-empty subset of X as a 
“minimum” then is named a well order

YyyxYx ∈∀≤∈∃
∅≠⊂
,:

YX,Y
yy

A reflexive, symmetric and transitive binary 
relation is defined equivalence relation and is ∅=∩⇒∉

∈=
[y][x][x]y

y}~x|X{y[x]

q
denoted with the symbol “~”:  it partitions the 
set X into a collection of disjoint subsets, called 
equivalence classes.

Xx =
∈

][
Xx
U

i/X quotient   ~/X
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Equivalence and Order examplesEquivalence and Order examplesEquivalence and Order examplesEquivalence and Order examples
The relation of “contained” between sets is a The relation of contained  between sets is a 
partial order: two sets may not be comparable BABA ⊂⇔≤

A “chain” of a partially ordered set is any totally 
ordered subset

nXXX ⊂⊂⊂ ...21

The relation “same remainder”, between
two integers in  divided by a given

)()q(ij~i i +=∧+=⇔ rnqjrn j
two integers in ,  divided by a given
positive integer n,  is an equivalence
relation between relative integers

]}1[],...,1[],0{[Zn −= n

Z
field

Inside the quotient n=/~ may be 
defined the operations of sum and 

+ 0 1 2

0 0 1 2

1 1 2 0

x 0 1 2

0 0 0 0

1 0 1 2

3Z

product 2 2 0 1 2 0 2 1

j][i[j][i]
][][][

×=×
+=+ jiji
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Applications or correspondencesApplications or correspondencesApplications or correspondencesApplications or correspondences

BAf
Subset of the cartesian product:  a 

BAf ×⊂ correspondence between domain A and 
codomain B

fbaBbAa ∈∈∃∈∀ ),( :! 
The unique element b=f(a) in B correspondent to an 

)()(: afbfbaBAf =∈→

q f( ) p
element in A, through f, is defined value of f in a

)(  ),(   : afbfbaBAf =∈→
a function “is” its graph

2121 )()( aaafaf =⇒= injective application

)( : afbAaBb =∈∃∈∀ surjective application
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Wiki: CorrespondencesWiki: CorrespondencesWiki: CorrespondencesWiki: Correspondences

Injective and surjective Non-injective and surjective

Non injective and non I j i  d j i  bij i   Non-injective and non-
surjective

Injective and surjective, bijective, one 
to one correspondence
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CardinalityCardinalityCardinalityCardinality

Two sets have the same cardinality if and only if there
exists at least one bijection between them ∞
An abstract general way to express the concept of
number and an equivalence relation

1

2

2

3

1

A set A is defined infinite if and only if there exists at 
least one bijection between A and one of its proper 
subsets  a subset B of A  different from A

. . .

2

3

3

4

subsets, a subset B of A, different from A

BAABfBAf ≠⊂→     bijection      :

n 1+n

A set A is defined finite if and only if it is not infinite
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In In classclass ExerciseExerciseIn In classclass ExerciseExercise

1+100=101 2+99=101 3+98=101 …  50+51=101

thought Carl Friedrich Gauss (1777-1855) in 1786, at thought Carl Friedrich Gauss (1777 1855) in 1786, at 
the age of nine

after Friedrich misbehaved,  his teacher J.G. Büttner,  gave, J , g
him a task:  add the integer numbers between 1 and 100

the young Gauss reputedly produced the correct answer
1+2+3+…+100 = 50x101=(100x101)/2 = 5.050 within 
seconds , to the astonishment of his teacher and his 
assistant Martin Bartels )1(21 +

=+++
nnn

the young student, one of the greatest mathematician of 
the second millennium, applied the principle of 

h l d

2
...21 =+++ n

mathematical induction
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Mathematical InductionMathematical InductionMathematical InductionMathematical Induction
We show a logical proposition p, related to integer numbers, is true for 

1the first integer number 1

2
)11(11 +

=

We assume the proposition p true for an arbitrary integer n

2

2
)1(...21 +

=+++
nnn

We then proceed to prove the proposition p holds for the successor 
of n, n+1

)2)(1()1(2)1()1( ++++++ nnnnnnn
2

)2)(1(
2

)1(2)1()1(
2

)1()1()...21( ++
=

+++
=++

+
=+++++

nnnnnnnnnn

The principle of mathematical induction then asserts the proposition p is truep p f p p p
for all natural integers:  it is a principle, it hasn’t to be proved
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PeanoPeano’s ’s IntegersIntegers:  :  PeanoPeano s s IntegersIntegers:  :  
The italian mathematician Giuseppe Peano (1858-
1932) gave,  at the end of XIX century,  a theoretical 
set definition of natural integer numbers

Th  i   h  d  d h i l The naive set theory, correspondences and mathematical 
induction are enough to achieve this bright result

The natural integer numbers are a non-empty set , containing at least 
the element 1,  for which there exists at least one correspondence           
s:   satisfying the following properties:y g g p p

• s is an injective correspondence
• s never assumes the value 1, for any element in 

mnmsns =⇒=     )()(

• each subset J of  containing the element 1, which if it contains an
element n then it contains s(n), it is coincident with the full set 

Th  f i   i  ll d f i   ( ) ( 1)The function s is called successor function:  s(n)=(n+1)
n+1 it is not a sum, for now it is just a symbol
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NaturalNatural IntegersIntegers AlgebraAlgebraNaturalNatural IntegersIntegers AlgebraAlgebra
The successor function s is a bijective correspondence The successor function s is a bijective correspondence 
between  and its proper subset -{1}:  the natural integers
set is infinite.  It can be proved with the principle of
mathematical induction.mathematical induction.

Again, using the principle of mathematical induction and the 
successor function, it is easy to define the sum and product , y p
operations to make s(n) just the expected sum (n+1):

)1(11 s=+ )()( mnsmsn +=+ 1)()1( ++=++ mnmn

111 =× nmnmsn +×=× )()( nmnmn +×=+× )()1(

In the same way it is possible to define the natural order relation 
we are naively using to compare natural integers.

We obtain a total order that is also a well order:  each non-empty 
subset of  has a minimum.

CNR Italy - ISTM



Infinite  Infinite  butbut wellwell orderedorderedInfinite, Infinite, butbut wellwell orderedordered
Actually  is the smallest  in the sense of cardinality infinite Actually  is the smallest, in the sense of cardinality, infinite 
well ordered set.

In the natural order each initial segment { i in | i <= n } =In the natural order, each initial segment { i in | i <= n } = 
{1,2,…,n} is finite.

Instead of using Peano’s Axioms we may think to define Instead of using Peano s Axioms we may think to define 
natural integers using this property:  the natural integers 
are any well ordered infinite set where all initial
segments are finite.segments are finite.

We would obtain a mathematical structure “isomorphic” 
with the Peano’s Integers,  beside the actual set we are g
using as a model.

The propositional calculus, the logic and the naive set 
theory are enough to build so much.  And more.

CNR Italy - ISTM



Beyond natural integersBeyond natural integersBeyond natural integers…Beyond natural integers…
From ordered couples of Peano’s integers pmqnqpmn +=+⇔)(~)(From ordered couples of Peano s integers 
a simple equivalence relation build the 
ring of relative integers : the zero and 
the negative integer numbers are born

qpmn
pmqnqpmn

−=−
+=+⇔),(~),(

1)]1,1[(
0)],[(
−=+

=
n
nn

g g

A  l  k  f  d d An analogous trick creates, from ordered 
couples of relative integers, fractions, the 
field of rational numbers 

pmqnqpmn ×=×⇔),(~),(

q
p

m
n
=
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 real and complex numbers real and complex numbers… real and complex numbers… real and complex numbers
A more involved equivalence relation defines 
the field f real numbers  fr m Ca ch

εε εε <−⇒>∃>∀ ||,: 0 mn aanmnn
the field of real numbers  from Cauchy
sequences of rational numbers and the square
root of 2 becomes the number 1.4142135…
the real line, the linear continuum

εε εε <−⇒>∃>∀ ||: 0
)(~)(

nn

nn

bannn
ba

415,1
42,1
5,1

        
414,1
41,1
4,1

}x2|Q{x
}2x|Q{x

2

2

<∈

<∈

4143,1
415,1

4142,1
414,1

1 ,),( 2iibaba −=+=A second degree polynomial equation, 
ith t  l ti  d fi  th  fi ld f 

2  x:Rx 2 =∈∃

)()())((
)()()()(

,),(

bcadibdacidciba
dbicaidciba
−+−=++

+++=+++
without any solution, defines the field of 
complex numbers  as ordered
couples of real numbers, where all
polynomial equations find a solutionpolynomial equations find a solution.

And complex numbers may be thought
as a model for the plane x 

θρ ieibaz =+=

a
b

x

y

θ
ρ
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And beyond numbers And beyond numbers 
ibaz +=

a
b

y

And beyond numbers …And beyond numbers …
As already observed from René C l j t

ibaz −=b−

x

As already observed from René 
Descartes (1596-1650),  algebra and 
geometry are different models of the 
same mathematical structures. 222||

    
bazzz

ibazibaz
+==

−=+=
Complex conjugate

same mathematical structures.

The trigonometric functions, sine and 
cosine, describe the unit circle in the 

  1)(i)( 22
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)sin,(cos tt
1

122 =+ yx

complex plane 

)cos( t
)sin()cos( titeit +=

1)(sin)(cos 22 =+ tt

)i ()( iit−

x
O

t

)sin( t

)cos( t )sin()cos( tite it −=

)sin( t

Leonhard Euler (1707-1783), proved a 
πi
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famous indentity containing all the 
important numbers of mathematics

01=+πie



 the reality  the reality ofof MathematicsMathematics… the reality … the reality ofof MathematicsMathematics
The dot product between two vectors a

2
Length of the vector ap

and b, as ordered couples of real numbers: 

),(),(| 22112121 +=⋅>=< ba bababbaa

2||||| aaa =><

)cos(|||||||| | θ××>=< baba

Two vectors are orthogonal if and 
only if their scalar product is zero, i.e. 
the angle between them is 90 degree

0| >==<⋅ baba

an algebraic definition that 
may be easily generalized to ∑

n

)()(|ay be eas y ge e a e  to 
vectors of complex 
numbers with an arbitrary 
number of dimensions

∑
=

=⋅>=<
i

iinn wzwwwzzz
1

2121 ),...,,(),...,,(| wz
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GeometryGeometry and Algebraand AlgebraGeometryGeometry and Algebraand Algebra
In two dimensions  as in an arbitrary

1| 1,111 =>=< δee
In two dimensions, as in an arbitrary
number of dimensions, orthogonality
allows to define an orthonormal
basis, a reference frame 0|

0|
1|

1,212

2,121

2,222

=>=<

=>=<

=>=<

δ
δ
δ

ee
ee
ee

basis, a reference frame ,

21

||
|   |

eeveevv
evev μλ

><+>=<
>=<>=<

And a reference frame allows to

21

2211 ||
eev

eeveevv
μλ +=

><+>=<f f
translate algebra in geometry and 
geometry in algebra

2e
vμ

Hilbert Space, David Hilbert, 
(1862-1943) )|,( >⋅⋅<H

1e λO

CNR Italy - ISTM



Infinite Infinite dimensionsdimensionsInfinite Infinite dimensionsdimensions
A finite number of dimensions is not alwaysy
enough to cope with reality, but
mathematicians don’t easily give up, they are 
able to use an infinite number of dimensions

They define the meaning of an infinite sum

∈>< | Nmnee δ

∑
∞

><=

∈>=< ,

|

, |

nn

mnmn Nmn

eevv

ee δ

=1n

and when integers are not enough, the discrete
case, they define the meaning of a continuous sum:

∫>=< dxxgxfgf )()(|

generalizing the meaning of dot product and 

∑
∞

=

>=<
1

|
n

nngfgf

CNR Italy - ISTM

generalizing the meaning of dot product and 
thinking the integral as a continuous sum



Up Up toto the the continuouscontinuous   analysisanalysisUp Up toto the the continuouscontinuous, , analysisanalysis
It is possible to travel through a unit circle with 

y
p g

an arbitrary frequency

πυπυπυ
υ )2sin()2cos()( 2 +== titete ti

x
O

t

)2sin,2(cos tt πυπυ
1

π
ωυπυω
2

   2 ==

To each frequency corresponds a continuousq y p
vector,  a unit circle traveled with a different
speed in one or the opposite direction

ti πυ2−

∫∫
)

dtetfdttetfeff
ti πυ

υυυ
2

)()()(|)( ∫∫ =>==<
)

and for each vector and each regular function f(t) it
i ibl t t th  d t d t  th  is possible to compute the dot product, the 
projection over a rotating unit circle

While trying to preserve the structure and the interpretation
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we defined the Fourier Transform,  Jean Baptiste Joseph 
Fourier (1768-1830)



Fourier Fourier TransformTransformFourier Fourier TransformTransform
Unit circles, traveled with arbitrary frequencies, 

y

)2sin,2(cos tt πυπυ
1

υey q
are an orthonormal basis, a reference frame, for 
regular functions

x
O

t

R,  | , ∈>=< ξυδ ξυξυ ee

We may write the vector f(t) as a continuous sum 
2e

vμ

of all its projections on unit circles, traveled with
arbitrary frequencies

1e λO

i i i i i f i

∫∫ =><= υυυ πυ
υυ defdeeftf ti 2)(|)(

)

∑
∞

=

><=
1

|
n

nn eevv

it is not surprising antitransforming we get
back the original function

the spectrum of the signal  the energy )()(|)(| 2 tftftf
)))

=
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the spectrum of the signal, the energy 
contained in the signal

)()(|)(| tftftf =



Spectrums  from realitySpectrums  from realitySpectrums … from realitySpectrums … from reality

Sine wave 50Hz

We can extract and transform spectrums 
to compress or filter signals

CNR Italy - ISTMSquare wave 50Hz



Real World and Digital WorldReal World and Digital WorldReal World and Digital WorldReal World and Digital World
Mathematical structures are powerful tools for the analysis of Mathematical structures are powerful tools for the analysis of 
the reality: they can be used in many ways and in many fields to 
compute … bits … numbers, from analogical sources.

Because this is all and only what even the more modern and 
advanced computers are able to do: execute logical and 
arithmetical operations on string of bits, on integer numbersp g g

0100 0001 0x41 65 ‘A’

+ 00 01

00 00 01

01 01 10

Binary arithmetic: 
implemented using
networks of logical gates, 
f i

x 00 01

00 00 00

01 00 01
of transistors

Mathematics is a tool for creating models of the reality that
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our computers are able to process



The The NumbersNumbers ofof The NetThe NetThe The NumbersNumbers ofof The NetThe Net
In the last 5,000 days, roughly 15 years, wey g y y
interconnected these networks of gates in one big 
Network, the Network of the Networks, the Internet.

And the numbers the Net are impressive:

• 1.2 billions of personal computers
• 2.7 billions of cell phones
• 1.3 billions of phones
• 27 millions of servers

80 illi f l• 80 millions of palms

Each device contains a large number of logical gates, of g g g
transistors:  a 2004 Intel Pentium had 100 millions, a 2005 
Intel Itanium over one billion.
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The interaction between all these elementary networks is 
The One Machine we today call “The Net”.



The The OneOne MachineMachineThe The OneOne MachineMachine
Into The Net over a billion of devices are 
interconnected: around 10^17 transistors, a number 
with 17 zeros, hundreds of millions of billions of logical 
gates.

The human brain is a network of over 100 billions of 
neurons  Even if neurons are not directly comparable neurons. Even if neurons are not directly comparable 
with transistors, this is six order of magnitude less 
than the number of elementary units of The Net, 
10^11 against 10^1710 11 against 10 17

The One Machine uses around 5% of the electric
l b ll d d h  l E henergy globally produced over the planet Earth.

The size of The Net doubles at a fast rate: probably
Moore’s Law: double every two years
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even faster than Moore’s Law.
Moore s Law: double every two years

an empirical exponential law



The The nextnext 5 000 5 000 daysdaysThe The nextnext 5,000 5,000 daysdays
Today The Net complexity may be compared with the 
human brain complexity.

In the next 5,000 days, 15 years, in a period between 
2025 d 2040  i  l i   l d2025 and 2040, its complexity may explode.

It is difficult to forecast its evolution, but, one day, it 
 b  l   th d  illi    may become complex as thousands, millions or even 

billions of human brains.

And we shouldn’t forget the human brains alreadyAnd we shouldn t forget the human brains already
interacting with The One Machine, billions of clicks
every day.

Kevin Kelly
Wired

http://www.kk.org/thetechnium/archives/2007/11/dimensions_of_t.php
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http://www.youtube.com/watch?v=J132shgIiuY


