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0 0 I Union
pv(Q AUB={x|(xe A)v(xeB)}

Intersection

PAQ ANB={x|(xe A) A(xeB)}
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NOT Complement
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p Xe A= xeB
A UB
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Two proposition are
OR q “equal” if and only if they
—P P have the same truth table
o
—pVv(
I 0

—P (—pva)=(p=0)
o )
| 0 | 0 I |
—Pv(
0 | | | 0 |
p p
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p if and only if (iff) q
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p sufficient condition for q

p necessary condition for q

p necessary and sufficient
condition for q: they are
equivalent

The propositions p and q are equivalent if and only if each one imply

the other

P=C

i.e.if and only if they satisfy the same “truth table” P

q=0p

I
O



\A/:L/:e DAAlA 1Nn ~A
VVIKI. DOOICAIl M g

Y y y

~l0]1 v 01 401 @0 |1

0100 0101 Of1]1 0101

AND s—f515] OR x—fr1=] IMPLYx—f515] XOR x—{17

Figure 1. Truth tables

: X X X
n ‘F @ﬂ ﬂ | ij_(-Bv
y J y y y

Figure 2. Logic gates

XAY -0 xVy - Xy = XDy
V 0 y s v

Figure 3. De Morgan equivalents

XAY xvy X—y XDy
Figure 4. Venn diagrams
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Two sets are “equal” if and
only if they contain the same

elements, i.e., if and only if
each one contains the other (A=B) =< (AcB)A(Bc A

xe (ANB)° = xe¢ ANB
x¢ ANB= (x¢ A)v (x¢B) C C C
(X§EA)V(X¢B):(\:(EAC)V(XEBC) (Aﬂ B) - A UB

(xe A°)v(xeB)= xe A°UB°

Xe AUB° = (xe A®) v (x e BY)

(xe A) v (xeB)= (x¢ A)v (x¢B) ACUBC C(Aﬂ B)c

(xg A)v(xgB)= xe A[B
X¢ ANB= xe(AnB)°

(ANB)® = A°UBS
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De Morgan’s Law
(ANB)® = A°UB° (AUB)® = AN B¢
—(pAQ)=—pVv—Q —(pvq)=—pA—Q

Isomorphic and Dual laws: they have the very same shape

Different concepts with the same shape, following
the same rules, computed in the same way
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(a,b) ={{a},{a,b}} :\nndol?:'dered couple of elements of two sets A
AxB={(a,b)|(ac A) A (beB)}

The set of all ordered couples: the cartesian
product of two sets A and B

003 T
002 1
001 T

M b H

A simple idea to build new sets from already
existing sets
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A binary relation R between the sets A and B is a R Ax B
subset of the cartesian product AxB. C AX

The set A is defined domain and the set B (a1 b) e R aRb
codomain
If domain and codomain are the same set X, the Rc— X x X

binary relation may assume interesting properties:

reflexive VX e X : XRX
symmetric XRy = yRX
antisymmetric (XRy) A (YRX) = x =y
transitive (XRy) A (YRz) = xRz

total VX, y e X :(xRy) v (YRX)
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A binary relation reflexive, antisymmetric and VX e XX <X

transitive is called a partial order, and usually is
denoted with the “less or equal” symbol. X<y)Alysx)=x=y

X<YA(Y<L2)=>Xx<L7Z
If it is also total, is simply called an order
relation or a total order. VX, y e X (X< y)v (y<X)
If each non-empty subset of X as a
“minimum” then is named a well order

YcXYz#0
dxeY:x<y,VyeY

A reflexive, symmetric and transitive binary XI=1y € XIx~y}

relation is defined equivalence relation andis Y  [X] = [X]N[y]=<
denoted with the symbol “~”: it partitions the | J[x]= X ’.
set X into a collection of disjoint subsets, called *<X “

equivalence classes. _
X [~ quotient
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The relation of “contained’” between sets is a
partial order: two sets may not be comparable A<B< AcB

\'I
vdic

A “chain” of a partially ordered set is any totally X,c X, c...c X,
ordered subset

The relation “same remainder”, between i~jo(i=qn+r)A(j=q;n+r)
two integers in Z, divided by a given :
positive integer n, is an equivalence Z, ={[0L,[4,...[n-1]}
relation between relative integers field
Z,

+lo|1]2 x|0|1]2
Inside the quotient Zn=2/~ may be 0l ol 12 0l ololo
defined the operations of sum and Ll 2o Lol 112
product 1+[i1=[i+ j] 22|01 2 021

[1]>D] =[x ]]



Applications or correspondences

Subset of the cartesian product: a
f (- A X B correspondence between domain A and
codomain B

Vae A dbeB: (a,b)ef
The unique element b=f(a) in B correspondent to an t
element in A, through f, is defined value of fin a
f:-A—>B (a,b)e f b= f(a)

a function “is” its graph

f (a:l_) — f (a2) — a:]_ — a2 injective application
Vb < B Jda e A: b — f (a) surjective application
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X Y X Y
\ / : :
2 *B
l 3 C

4

Injective and surjective Non-injective and surjective

X Y
1 ‘D
2 »B
3 +C
4: A

Non-injective and non-

Injective and surjective, bijective, one
surjective

to one correspondence
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Two sets have the same cardinality if and only if there
exists at least one bijection between them

An abstract general way to express the concept of
number and an equivalence relation

A set A is defined infinite if and only if there exists at
least one bijection between A and one of its proper
subsets, a subset B of A, different from A

f:A—>B fbijection Bc A A=B

A set A is defined finite if and only if it is not infinite
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1+100=101 2+99=101 3+498=101 ... 50+51=101

thought Carl Friedrich Gauss (1777-1855) in 1786, at
the age of nine

after Friedrich misbehaved, his teacher ).G. Biittner, gave
him a task: add the integer numbers between 1 and 100

the young Gauss reputedly produced the correct answer
1+2+3+...+100 = 50x101=(100x101)/2 = 5.050 within
seconds , to the astonishment of his teacher and his
assistant Martin Bartels 1424 4N

the young student, one of the greatest mathematician of
the second millennium, applied the principle of
mathematical induction
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We show a logical proposition p, related to integer numbers, is true for
the first integer number 1

1- 11+
2

We assume the proposition p true for an arbitrary integer n

n(n+1)

1+2+..4+n=

We then proceed to prove the proposition p holds for the successor
of n,n+I
n(n+1 nn+)+2(n+) (+DH(n+2
1+2+..4n)+(n+1) _nin+h )+(n+1) _nineh+2n+l) _(n+hn+2)
2 2 2
The principle of mathematical induction then asserts the proposition p is true
for all natural integers: it is a principle, it hasn’t to be proved
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The italian mathematician Giuseppe Peano (1858-
1932) gave, at the end of XIX century, a theoretical
set definition of natural integer numbers

The naive set theory, correspondences and mathematical
induction are enough to achieve this bright result

The natural integer numbers are a non-empty set [N, containing at least
the element 1, for which there exists at least one correspondence
s:N = N satisfying the following properties:

* s is an injective correspondence S(n)=s(m) = n=m

* s never assumes the value 1, for any element in N

* each subset ] of N containing the element 1, which if it contains an
element n then it contains s(n), it is coincident with the full set N

The function s is called successor function: s(n)=(n+1)
n+1 it is not a sum, for now it is just a symbol
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The successor function s is a bijective correspondence
between N and its proper subset N-{1}: the natural integers

set is infinite. It can be proved with the principle of
mathematical induction.

Again, using the principle of mathematical induction and the
successor function, it is easy to define the sum and product
operations to make s(n) just the expected sum (n+1):

1+1=5(1) n+s(m)=s(n+m) n+(m+1)=(n+m)+1
1x1=1 nxs(m)=(nxm)+n nx(m+1)=(nxm)+n

In the same way it is possible to define the natural order relation
we are naively using to compare natural integers.

We obtain a total order that is also a well order: each non-empty
subset of N has a minimum.
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Actually N is the smallest, in the sense of cardinality, infinite
well ordered set.

In the natural order, each initial segment {iiNN|i<=n}=
{1,2,...,n} is finite.

Instead of using Peano’s Axioms we may think to define
natural integers using this property: the natural integers N
are any well ordered infinite set where all initial
segments are finite.

We would obtain a mathematical structure “isomorphic”
with the Peano’s Integers, beside the actual set we are
using as a model.

The propositional calculus, the logic and the naive set
theory are enough to build so much. And more.
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From ordered couples of Peano’s integers (n,mM) ~(p,g) =n+g=m+p
a simple equivalence relation build the _ [(n,n)]=0
ring of relative integers Z: the zero and N—m=p—( [(Ln+1)]= -

nza

the negative integer numbers are born e
SRR R L E BT E L
R b e

98-7-6-543-2-10123456789 a9 tia olw AN dia ze

-4
Sell3 e[LF o2 WAD 4D 53
An analogous trick creates, from ordered Wiz Wi 5D G0 wid sG2
. . . _2 .'.b .'.b ..-' ...I ...l .
couples of relative integers, fractions, the i MiD B D adn oD
o -1 .'l. .'l. .'.. .'l. ,'l. o
field of rational numbers Q 0 i -0 -G0 dka -Go _
0o 1'2 3 4 5 m
171 1/2-1/3 1/4-1/5 1/6-21/7 1/8=-
AU A LA LD
2!1{2:’2}2]3{2;’4/2/5{2;’6/2/7 28 -
3 e 35 36 5 5 (n ) (p q) <SNxg=mxp

4/1 4/2 4/3 4/4 4/5 4/6 4/7 48 =™
5/l 5/2 5/3 5/4 5/5 5/6 5/7 58 -
&1 62 63 64 65 66 6/7 68 -
7#1‘{7#2 73 74 75 76 1T TB O
B/1 8/2 83 8/4 85 8/6 8/7 88 -

\1‘\
LA
\-1‘\

\

.
3|3
Ql'cs
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A more involved equivalence relation defines
the field of real numbers R from Cauchy
sequences of rational numbers and the square
root of 2 becomes the number 1.4142135...
the real line, the linear continuum

1,4 1,5 {x eQ|x*<2}
1,41 1,42 2
X e 2 <X

1,414 1,415 xeQ] , }

1,4142 1,4143 dxeR: x*=2

A second degree polynomial equation,
without any solution, defines the field of
complex numbers C as ordered
couples of real numbers, where all
polynomial equations find a solution.

And complex numbers may be thought
as a model for the plane Rx R

- b | § A

|~ Il Are
ICA 11IUITIVUCT >

Ve>0an :nm>n =ja, —-a |<¢&

(a,)~ ()
Ve>03dn :n>n_=a,—-b ke

y 3

(a,b)=a+ib, i*=-1

(a+ib)+(c+id)=(a+c)+i(b+d)

(a+ib)(c+id)=(ac—bd)-+i(ad—bc)
17

iZ=-1
dzeC: z2=-1
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As already observed from René
Descartes (1596-1650), algebra and
geometry are different models of the
same mathematical structures.

Complex conjugate
z=a+Ib Z=a-Ib

27 z[’=a’+b’

The trigonometric functions, sine and 4

. ) L t,sint 2, 2
cosine, describe the unit circle in the D (cost,sint) X“+y =1
complex plane C A y cos?(t) +sin?(t) =1

!J 'e“ = cos(t) +isin(t)

N NI N cos(t) e ™™ =cos(t) —isin(t)

Leonhard Euler (1707-1783), proveda
famous indentity containing all the e”+1=0
important numbers of mathematics
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The dot product between two vectors a Length of the vectc;r a
and b, as ordered couples of real numbers: <ala>=|a]

<a|b>=(a,a,)-(b,b,)=ab +a)b,
<a|b>=||a||x||b||xcos®)

a-b=<a|b>=0

Two vectors are orthogonal if and
only if their scalar product is zero, i.e.
the angle between them is 90 degree

an algebraic definition that
may be easily generalized to B Nl
vectors of complex <z|w>= (Zl’ 22""’2”) (Wl’WZ""’W”) - Zziwi
numbers with an arbitrary
number of dimensions
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=0,,=1
In two dimensions, as in an arbitrary <ele =
number of dimensions, orthogonality

allows to define an orthonormal
basis, a reference frame

<e,le,>=0,,=1
<€ |, >=6,=0
<e,|e,>=6,,=0

<v|e >=A4 <v|e,>=u

And a reference frgme allows to V=<V| e, >e+<V | e, > e,
translate algebra in geometry and

geometry in algebra V=48 + ue,

A Hilbert Space, David Hilbert,
(H,<-|->) M (1862-1943)

v
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A finite number of dimensions is not always . j,:éf ﬂi‘w,_,f,ﬂ:;m
enough to cope with reality, but costrl -'r':..l;--‘.f‘_'”_
mathematicians don’t easily give up, they are sing ;'\‘\ g
able to use an infinite number of dimensions /”' ' \ S
/
/d
They define the meaning of an infinite sum
s
<e,|le,>=0d,, n,meN b R
v=>Y <vle, >e, %\f
n=1 W/ i -

and when integers are not enough, the discrete
case, they define the meaning of a continuous sum:

< f1g>= [ f()gO)dx <flg>=> 10,
n=1

generalizing the meaning of dot product and
thinking the integral as a continuous sum
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It is possible to travel through a unit circle with R

an ar’bitrar‘y frequency /\ﬁhzﬁ sin 2zut)
e, (t) =e"”™ = cos(27ut) +isin(2zut) _ t
OW=270 U= @ \J
2

T

To each frequency corresponds a continuous
vector, a unit circle traveled with a different
speed in one or the opposite direction

f(v) =< f e, >= [ f(D)E,(t)dt = j fF(e

and for each vector and each regular function f(t) it
is possible to compute the dot product, the
projection over a rotating unit circle

While trying to preserve the structure and the interpretation
we defined the Fourier Transform, Jean Baptiste Joseph
Fourier (1768-1830)
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cos 2zut,sin 27zvt)
1.7
/// t
= » X

Unit circles, traveled with arbitrary frequencies, v
are an orthonormal basis, a reference frame, for
regular functions

<e,|e.>=94,, v,eR

We may write the vector f(t) as a continuous sum
of all its projections on unit circles, traveled with
arbitrary frequencies

f(t):I<f|eU>eUdu:jf(u)ei2”“tdu V=Z<V|en>en
n=1
it is not surprising antitransforming we get
back the original function

the spectrum of the signal, the energy | 1?('[) |°= ]?('[) 1?('[)
contained in the signal



C—AAA-IA_I Epaa o lcmAm MAAI:A-\'
SpcLLiuriin ... 1101 T'CTall
. ?lgnal\f\lave ofCH‘:I 26 : PowerSpectrum.
E B |
N E E E E N ........ ....... ....... .................. ....... ....... ........ ........
30 5 297.0 o0 Hz 2441 4062
Sine wave 50Hz
We can extract and transform spectrums
to compress or filter signals
31 : : Signal vave of CH1 : : 190 : Powers.pectrum.
|10 FETTTUU FEUURUUUN SUPPRDVUR! SUURIUUIY SUPRUVURT! SURDUUPRRY SURDUURIIY SUUUURRUNS FUDURRIURY SUPPRI EL |t e e e
N ................ ................ ............................... . h | . . . . : :
30 5 1970 3.0 Hz 2438.4062

Square wave 50Hz
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Mathematical structures are powerful tools for the analysis of

the reality: they can be used in many ways and in many fields to [ |

compute ...

. numbers, from analogical sources.

Because this is all and only what even the more modern and
advanced computers are able to do: execute logical and
arithmetical operations on string of bits, on integer numbers

0100 0001 Ox4 |
+ |00 |0l x |00 | o0l
00 |00 | oI 00 |00 |00
ol (o1 |10 ol |00 | ol

65 ‘A’

Binary arithmetic:
implemented using
networks of logical gates,
of transistors

Mathematics is a tool for creating models of the reality that

our computers are able to process

A NMiagieal ]l A
U Jigitdl vvOTlid

Figure 2. Logic gates

....................



In the last 5,000 days, roughly |5 years, we
interconnected these networks of gates in one big
Network, the Network of the Networks, the Internet.

And the numbers the Net are impressive:

|.2 billions of personal computers
2.7 billions of cell phones

|.3 billions of phones

27 millions of servers

e 80 millions of palms “F‘me T == Ts
5
: : : i '| 2

Each device contains a large number of logical gates, of Tooooo T
7400 1

transistors: a 2004 Intel Pentium had 100 millions, a 2005
Intel Itanium over one billion.

The interaction between all these elementary networks is
The One Machine we today call “The Net”.



I l l e U l I e I I L l I I I e Specifications of the One Machine
170 quadrillion Transistors
T . 55 trillion Links
Into The Net over a billion of devices are S RIS =
interconnected: around 10717 transistors,a number 31 kiﬁhﬁnz ITextmessages
. e ‘. . 162 kilohertz nstant messages
with 17 zeros, hundreds of millions of billions of logical  14kiner Sal
246 exabyte Storage
gates. 9 exabyte RAM
7 terabytes/second | Bandwidth
800 billion kwh/year | Power consumption

The human brain is a network of over 100 billions of
neurons. Even if neurons are not directly comparable
with transistors, this is six order of magnitude less

than the number of elementary units of The Net,
[OA 1T against 10217

CPU Transislar Gounts 19712008 & Moaore's Law

2000,000,000 — it et m e
1,000,000,000 %

1,000,000 —
16,000,000

1,000,000 j’

Transistor counl

The One Machine uses around 5% of the electric
energy globally produced over the planet Earth. ooy

ZHY— conpue

Date ofintroduction

The size of The Net doubles at a fast rate: probably

, Moore’s Law: double every two years
even faster than Moore’s Law.

an empirical exponential law
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Today The Net complexity may be compared with the
human brain complexity.

In the next 5,000 days, |5 years, in a period between
2025 and 2040, its complexity may explode.

It is difficult to forecast its evolution, but, one day, it
may become complex as thousands, millions or even
billions of human brains.

.
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a
interacting with The One Machine, billions of clicks Kevin Kelly
every day. Wired

lee
I

http://www.kk.org/thetechnium/archives/2007/1 | /dimensions_of t.php

http://www.youtube.com/watch?v=] | 32shgliuY



