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Abstract

A real-time speech recognition system of Italian has been
developed at IBM Rome Scientific Center. It handles natural
language sentences from a 20000-word dictionary, dictated
with words separated by short pauses. The approach being
applied to the {talian language is based on the probabilistic
techniques applied to recognition of English by researchers
at IBM T. J. Watson Research Center, Yorktown Heights.
The architecture consists of a PC/AT equipped with signal
processing hardware. The paper describes the system, shows
results of decoding tests and includes descriptions of the
topics in speech recognition being currently investigated.

1. Introduction

Existing speech recognition technologies have proven
adequate for simple tasks, involving knowledge of a small
vocabulary {tens or hundreds of words), suiting limited
applications (typically recognition of a set of commands
uttered in an isolated fashion by an operator whose hands
are busy); they are usually independent of the target
language.

Interesting applications in an office environment, such as
text dictation and database query, on the other hand, must
be capable of handling natural language and pronunciation.
This requires large vocabularies (thousands of words), and
necessitates substantially more sophisticated techniques,
which take into account language-specific knowledge on
phonology, syntax and {surface) semantics.

Rome Scientific Center has developed a real-time
isolated-utterance speech. recognition system for the Italian
language, based on a 20000-word vocabulary. The
recognizer architecture consists of a workstation based on a
PC/AT equipped with signal processing hardware.
Word-recognition accuracy for pre-recorded sentences ranges
from 95% to 98%. The words must be uttered separated by
short pauses.

The Speech Recognition Project started in ‘1985 at 1BM
Rome Scientific Center from a cooperation with the IBM
T.J. Watson Research Center, where advanced prototypes
for the English language have been developed. By July 1986
a 3000-word recognizer based on an IBM 3090 mainframe
and a PC/AT was developed. By December 1986 the
recognizer was implemented on Tangora hardware [1][2] .
The 6000 and 20000-word recognizers were completed by
July 1987 and April 1988, respectively.

The mathematical approach is probabilistic, based on the
maximum likelihood principle {3]. . The role. of human
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knowledge is limited to the design of a basic model of speech
production and perception; statistics is used as a
methodology for integration of the conceived model by
“automatic learning™ from data.

Lot We=ww,..wybea sequence of N words, and let 4 be
the acouslic information, extracted from the speech signal,
from which the system will try to recognize which words
were uttered. The aim is to find the particular sequence of

words _ﬁ’ which maximizes the conditional probability
P(WIA), ie. the most likely word sequence given the
acoustic information. By Bayes’ theorem,
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P(A| W) is the probability that the sequence of words W
will produce the acoustic string A, that is, the probability
that the speaker, pronouncing the words W , will utter
sounds described by A. P(W) is the a priori probability of
the word string W, that is, the probability that the speaker
will wish to pronounce the words W. P(A) is the
probability of the acoustic string 4; it is not a function of
W, since it is fixed once A is measured, and can thus be
ignored when looking for the maximum over W,

A consequence of this equation is that the recognition task
can be decomposcd in the following problems:

1. perform acoustic processing to encode the speech signal
into a string of values 4 representative of its acoustic
features, and, at the same time, adequate for a statistical
analysis;

2. compute the probability P (A | W) (for this purpose an
acoustic model must be created);

3. cvaluate I’(Tﬁ) (for this a language model is nceded);

4. look, among all possible sequences of words, for the
most probablc one, by means of an efficient search
strategy {an cxhaustive scarch is not {easible, even for
small vocabularics).

A description of the system architecture is provided in the
next section. In the following sections, acoustic and linguistic
modcling  of the Ttalian language are discussed and
experimental recognition results are given; furthermore a
description is given of topics in speech recognition being
investigated, including automatic phone clustering for fast
lexical access [47]; fast speaker adaptation [5]; speech
databases [6]; automatic phonetic transcription [77; human
factors of voice-activated text-cditing [87.
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2. System Architecture

Recognition and transcription of speech are performed by a
workstation consisting of an IBM PC-AT equipped with
four signal processing cards and the IBM ECD high
resolution screen. Speech is collected by either a lip
microphone (providing good noise immunity) or a table
pressure zone microphone (more sensitive to background
noise, but very comfortable for the speaker) [9]. The
digitized acoustic signal (20K samples/sec, 12 bits/sample) is
processed to extract, every 10 milliseconds, a vector of 20
parameters, which represent, essentially, the signal log
energy in 20 frequency bands (spaced in accordance to the
frequency sensitivity of the human ear), and transformed
nonlinearly to take into account the adaptation capability to
different sound levels. The vector-quantization replaces each
vector with an acoustic label identifying the closest prototype
vector belonging to a speaker-dependent pre-computed
codebook of 200 elements.

The search strategy is based on the stack sequential decoding
algorithm [10]. It controls the decoding process by
hypothesizing the most likely sequence of words {by means
of an efficient heuristic method), and requests the evaluation
of linguistic and acoustic probabilities according to the
hypothesized left context of the sentence. Stack decoding
proceeds from left to right, and therefore is intrinsically well
suited to a real-time system, which recognizes word
sequences while they are being spoken.

The human interface of the speech recognizer consists of a
text editor, which allows the use of both voice and keyboard
for text input and editing. Commands for text insertion and
deletion, word-searching, formatting ( with a “what you see
is what you get") interface are included. Documents can be
filed, retrieved and printed. All editor commands can be
given either by keyboard or by voice. A word (or any
character string) not included in the vocabulary can be input
by pronouncing a keyword (which sets the system to a
single- character input mode and by spelling it).

3. Acoustic Modeling

The acoustic model is based on Markov models [11][12] of
Italian phonemes as fundamental building blocks. A key
factor to achieve a good recognition accuracy is the
definition of the topological structure of the Markov chains.
It has been observed, both for English and Italian, that the
same Markov structure can adequately be used for all the
phonetic elements of the language, if it provides enough
degrees of freedom. Differentiation among phonetic
Markov sources is thus left entirely to the parameter
estimation process [13]. Therefore, the essential problem is
the design of the set of phonetic elements by which the
language sounds are described. Phonemes, the classical units
defined by the phonology of the language, are a good
starting point, but don’t adequately take into account the
variability of the speech phenomena. On the other hand, a
too detailed model, involving a large number of parameters,
might require an unacceptably large statistical sample of the
speaker’s voice to be trained. The design of the phonetic
alphabet should then look for the best trade-off between
detail of modeling and brevity of training.

A systematic procedure to look for an optimal phonetic
alphabet has not been developed yet.  Our approach
combines the results of traditional acoustic and phonetic
research with analysis of statistical data. For this purpose,
the speech signal is aligned to the Markov source by means
of the Viterbi algorithm [14]. Comparison of several specch
segiments aligned to the same phonctic machine helps in
identifying ~coarticulation effects, ic.' acoustic variability
depending on the phonetic context, and inter-speaker
differences due to regional inflections. A measure of the
quality of the phonetic representation may be provided by
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the mutual information between the phonetic alphabet and
the set of speech alignments. After making experiments
with various phonetic alphabets (see below) we adopted a set
of 56 phonetic units [15], while italian is usually described
in terms of 30 distinct phonemes.

Recognition experiments are the most reliable way to
evaluate the effectiveness of a modification to the phone
alphabet, but are slow and computationally expensive (they
involve  re-training of the speaker and decoding of a
prerecorded set of sentences). We experimented some faster
measures, which proved very - useful. The Kuliback
divergence (or cross-entropy) defined as:

v
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can show whether utterances (/T ) of two units (M), M) have
significant statistical differences. This measure is especially
convenient when considering to split -a set of sounds,
previously described by a single phonetic unit, into two sets
described by two different units (usually depending on the
phonetic context).

Exact computation of divergence requires that the
summation be extended to all possible sequences of acoustic
labels 4. As this is infeasible, approximate techniques are
needed. We experimented three techniques, described in [47:
consider emission probabilities of single labels instead of
sequences; extend the summation to a sample set of label
sequences uttered by the speakers and aligned via the Viterbi
algorithm; extend the summation to a set of label sequences
obtained by a Monte Carlo simulation of the behavior of the
phones.

A notable problem of Halian is the presence of inflections
due to mispronunciations by speakers from some regions. A
possible solution consists in describing mispronounced words
with more than one word model; this requires that more
than one source be matched to the incoming utterance
during recognition. Our more efficient solution consists in
introducing “ambiguous” phonetic units, which, after the
parameter estimation performed by the training procedure,
are  flexible enough 1o model the inconsistencies of the
speaker’s pronunciation.

The vowel e, when stressed, should be pronounced closed
{/e/) in some words and open (/&) in others. Table 1 shows,
for one speaker, divergences between the following units:
EO (representling the open stressed e/ sound), EC (the
closed stressed Jef), X (the ambiguous stressed e), IS (the
stressed fif). The O and EC units, which are associated to
consistently pronounced e, display rather high divergence,
while the EX unit, associated to closed and open occurrences
of e, is rather well matched to both. The IS unit is more
similar to the closed than to the open e.

Table 1. Divergences between phone units.
10 e X 15

10 0.0 »

EC 6.2 0.0

Iy 4.5 2.1 0.0

IS HZ 49 89 0.0

‘The system has indecd proven capable of handling speakers
from different ftalian regions with essentially identical
performance.
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Next table shows experimental word recognition accuracy
when decoding is purely acoustic (i.e., the language model
gives all words the same probability), for three phone sets,
using the 6000-word vocabulary recognition system. The
first one, PH45, consists of 45 phones, obtained by
augmenting the set of 30 Italian phonemes by means of
basic phonetic knowledge. The above described statistical
techniques were employed to further refine the set to include
55 phones (PHSS). Finally, some experimental data on
words ending with a consonant (few in [talian, but rather
frequent and confusable, because of their short duration)
suggested introduction of a special unit in order to model the
glottal pulse often occurring at the end of these words
(PHS6). The notable improvement in accuracy is largely due
to the fact that these words were often confused with similar
words ending by vowel.

Table 2. Average recognition accuracy with
various phonetic alphabets.

PH45 88.7
PHSS 90.9
PHS56 92.2

Another peculiarity of the Italian language is the high
frequency of vowels. The ratio of consonants to vowels in a
word, which is particularly low in all Romance languages, is
only 1.12 for Italian, while for English is 1.41 and for
German is 1,71 [16]. Therefore, special care was used in
modeling vowels: the seven vowel phonemes of [talian are
described by eighteen distinct phonetic units.

Estimation of Markov parameters is accomplished by the
Baum-Welch algorithm [17], which attempts to maximize
P(A|W) for the (known) training text uttered by the
speaker.

In the standard training procedure, the user of the
dictating-machine prototype is requested to read a text,
which will be called L in the following, consisting of 100
meaningful sentences (1043 total words). The resulting
speech sample is about 15-minute long. The text has been
designed in order to provide several instances of each phone
in a representative set of phonetic contexts.

During recognition, the acoustical model is used to compute
the probability P(4 | W) . As it is infeasible to carry out the
computation for all the words in the vocabulary in real time,
the acoustical match consists of two stages. A fast, rough
analysis is first performed to discriminate words displaying
gross mismatches to the incoming utterance [18]. In this
way a small number of words is selected, for which a
detailed match computation is carried out.

Sentences are uttered with short pauses between words.
However, the decoder does not rely on silence detection to
identify word boundaries. A probabilistic determination of
the most likely end point of each word is carried out by the
acoustical matcher itself. This allows very short pauscs
between words, while direct silence detection would require
long pauses (about half a second) to avoid confusion with
silence segments inside words, due to stop consonants.

4. Language modeling

The language model estimates the probability of a ward
sequence W = wiwy.. wy by evaluating the probability of
cach word, given the left context of the sentence:

N
P(wy .. wp) = TTP (Wil wy... wiy).
i1

In accordance with the statistical approach, the estimator is
built from relative frequencies extracted from a large corpus
of sentences. To cstimate the probability of a word,
contexts with the same last N— 1 words are considered
equivalent {N-gram language model {19]):

P(wilwy ... weg) = P(wil Wiy . wiy)

A value N=3 (trigram language model) was actually used.
The predictive power of a probabilistic language model is
mcasured by perplexity[ 207, defined as:

p:z;; v

where H is an estimate of he entropy (according to the
language model probability P) computed on a text wy ... wy,
generated by the source which is being modeled:

~

L ~
II=——;——'>< 3 togal (wilwimsy ... wioy).
e

Perplexity is the average uncertainty (the branching factor)
[20] of the model expressed by the equivalent number of
equiprobable words. '

‘The language model is built on a backing-off approach [ 19],
combining N-gram statistics {computed from a corpus of
107 miltion words) and the Turing’s statistical technique to
estimate the probability of linguistic events not observed in
the corpus [197(217 . The threshold for bigram and trigram
discount factors was chosen as in [19]. Turing’s formula
was tested on a {0 million word corpus and showed results
very close to experimental data [21].

The twenty thousand words in the system’s vocabulary wére
chosen as the most frequent ones over a subset (44 million
words) of the corpus used for language model training,
which was taken from magazine and daily newspaper articles
and from news-agency flashes on economy and finance,
provided by “Il Mondo” weckly magazine, the “Sole 24 Ore”
daily newspaper and the “Ansa” agency, respectively. The
vocabulary gives a coverage of 96.5 % on disjoint test sets
taken from the samc sources as the training corpus.

We grouped into classes the words which are likely to be
used in the same context such as names of towns, companies
and so on. About 14% of the words in the vocabulary were
put into 34 classcs. The remaining words were considered as
a one-word classcs. For cach word, the class choice was
made taking into account the Italian language specific
phenomena known as apostrophe to determine the possible
contexts where the word can occur. The probability of
occurrence of word w; given the context wy._y, w;.3 is given
by:

P(wil wioy, wi )= POw; ] €Yy x (Gl Ciy, Ciaa)

where C; is the class which the word wy belongs to. A word
belongs to one class only.

The language model gives perplexities of 98 and 86 on the
text used for decoding tests and on a disjoint text taken from
the same sources as the training corpus, respectively.

5. Decoding tests

The following table shows the word-reécognition accuracy of
the decoder as measured on 62 test sentences amounting to
1043 words.



Table 3. Speech recognizer performances..
Average, best and worst recognition
accuracies concerning speakers with
various degrees of experience in using
the decoder for 20000-word
vocabulary.

Speakers Accuracy (%)

Experience | Gender Ne. A B W

subjects

Good M -5 97.5] 9821} 964

None M 10 963 | 98.0 | 94.2

None F 6 96.3 ] 982 | 948

6. Studies on fast speaker adaptation

The 15-minute training speech sample L is normally required
from each speaker to find an optimal set of prototype
vectors for the codebook, via k-means clustering and to
compute HMM parameters, i.e. transition and emission
probabilities.

Speaker-independent  recognition  experiments  were
performed {(using the 6000-word vocabulary recognition
system) by collecting speech samples by 10 speakers and
computing common  prototypes and  probabilities;
recognition rates ranging from 84% to 93% were achieved
on new speakers. The techniques we are studying [5] are
aimed at enhancing recognition accuracy by adapting the
common prototypes and probabilities by a rapid analysis of
a short (about 1-minute) speech sample S provided by the
new speaker.

Previous works on this subject present some approaches to
HMM parameters adaptation, without considering the
acoustic codebook problem [22]; techniques for mapping
the codebook to that of a reference speaker, in a DP
matching environment, are discussed in [23]. ~ Work on
codebook adaptation was aimed at the task of isolated digits
recognition, and required a sample of the whole dictionary
by the speaker [24]. A Bayesian approach was applied to a
feature-based system [25].

We took into consideration both the codebook and the
HMM parameters estimation aspects. We rely on
multi-speaker {rather than on single-speaker) references, to
avoid dependency of the results on the acoustical similarity
between the reference and the new speaker.

For codebook computation, the problem of the statistical
insufficiency of the adaptation sample S ‘is addressed
according to two approaches:

1. Vector prototypes are modeled as Gaussian probability
distributions. The a priori probability distributions of
the prototypes means are estimated from sample L
uttered by each of 10 speakers. Then, for each new
speaker, the a posteriori means of the adapted
prototypes, given S, are computed via Bayesian learning.
For sake of computational efficiency,  a diagonal
covariance matrix is assumed.

2. As the recognizer performs Fuclidean, rather than
Gaussian, labeling of acoustic vectors, we extended the
deleted-estimation technique [17][267 to an Euclidean
framework, to find an optimal interpolation between the
common prototypes Ci and the prototypes Si obtained
from S. The i-th component of the adapted . prototype
Ay is given by

A= ApiCri+ (1 — Api)Ski
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where b indicates a bin dependent on the amount of data
available for prototype k in S. A is estimated by
minimizing total distortion.

Both techniques allow computation of adapted prototypes in
few seconds. The following table shows recognition rates for
3 speakers, using clustered (from sample L), common and
adapted (by technique 1 and 2 respectively) prototypes. In
all cases, a complete training of the HHMM parameters on
sample 1. was performed.

Table 4. Different vector prototypes..
Recognition accuracies for 3 speakers
using vector prototypes obtained with
various techniques. Data refer to
6000-word vocabulary recognizer.

Spk Cl.us COMM | ADP1 ADP2
S§SS 98.0 95.7 98.0 97.7
STR 95.7 90.0 95.7 95.4
AFS 96.1 93.8 942 94.2

For fast HMM parameters estimation, we are applying
deleted estimation to find the optimal (in the maximum
likelihood sense) interpolation between common and
speaker-dependent (obtained from S) statistics.

7. Speech database building and
checking

Aligning speech to its phonetic transcription is not an easy
task. Manual alignment requires an expert and is slow and
expensive. Efficient and reliable automatic methods are
strongly needed.

An (almost completely) automatic approach to the problem
of building a very large time-aligned speech database has
been developed [6]. We used this approach to collect more
than 30 hours of speech uttered by 10 different speakers,
corresponding to over 62000 words. The data were
afterwards aligned to their phonetic transcriptions.

The system archilecture is composed of: IBM PC-ATs
equipped with attached A/D/A converters and signal
processors {277, optical devices which allow large,
write-once, direct-access storage; a host mainframe; a
token-ring network connecting the PCs and the host.

The speech collected according to the mentioned technique is
stored in real time on the optical disk. The spcech signal
may then be transformed by techniques such as Fast Fourier
FFransform, Lincar Predictive Coding, and cepstral analysis.
For the purposc of phonetic alignment, we process the signal
through the acoustic front-end of the speech recognizer (see
section 2) These preliminary computations are performed by
the workstation; the time-alignment and checking process
then takes place on the host mainframe.

We align sequences of codewords to their phonetic
transcription using the Viterbi algorithm [[14].

Other automatic techniques for speech alignment found in
the literature propese dynamic programming methods to
align the signal to a sequence of phonctic features [287 [297,
or to a reference waveform [30].

The aligned waveforms must then be analyzed in order to
correct errors. These may come cither from inaccuracies due
the statistical nature of the Viterbi algorithm, or from
problems in the recorded data, due to undesired noise or
speaker mistakes. We proposce a technique which overcomes
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the need of a complete listening of the recorded utterances
[31] and produces results of comparable accuracy.

Our technique consists in performing several statistical tests
to find possibly incorrect word-aligned speech segments.
Gross errors are identified by the Viterbi algorithm itself.
An independent likelihood measure of the obtained
alignments is provided by a statistical model of the duration
of the phonemes. We also compute a more detailed
likelihood measure which assumes a Poisson distribution for
the probability P(C]|W) of the codewords produced by the
Markov source associated to each word [32]. We found
that is much more practical to impose a likelihood threshold
on P(W|C) rather than on P(C|W). P(WIC) is estimated
through the Bayes’ formula:

PC|W)P(W)
KC)
where P(W) is inessential, and P(C) is approximated by an

expression depending only on the length of the codeword
string C.

W)=

This automatic process classified an average of 2.5% of the
utterances as suspect. They were then manually examined
by using an interactive system allowing high quality
graphical display and replay of selected speech segments.

The whole process of database construction, consisting of
recording, analysis, checking and correction of wrong
utterances, took less than six weeks.

8. Automatic phonetic transcription

In the development of our prototype we use Automatic
Phonetic Transcription (APT) [7] for the design of the
phonetic structure of the words of the initial vocabulary as
well as for its personalization, i.e. adding of new words by
the user.

Traditional APT systems (based on rules or on automatic
learning) have inadequate accuracy [33][34](35] . We
followed an approach where phonotactical knowledge (well
described by a set of formal rules) is separated from lexical
knowledge (largely based on experience and not suitable to a
formal description).

Grapheme-to-phoneme translation for the ftalian language
presents relatively low uncertainty. The most relevant
ambiguities are:

¢ placement of stress;

* stressed e and 0 may be pronounced open (/e/ and /o})
or closed (/e/ and /o/);

* i and ¥ may be either vowels {/i/ and /u/) or semi-vowels
(/if and fwj),

* 5 may be either sonorant (/z/) or non-sonorant (/s/);

* 2z may be either sonorant (/dz/) or non-sonorant {/ts/);

* gl may be either a palatal liquid (/A/) or a sonorant velar
stop followed by an alveolar liquid {/gi}).

Other ambiguities are due to special words (such as words of
foreign origin).

Our system is based on a set of rules which formalize
phonotactical knowledge only, without attempting to
represent lexical knowledge. Therefore the rules contain all
the above mentioned ambiguitics of  Ttalian
grapheme-to-phoneme translation. Bach rule consists of a
left part and a right part. The left part consists of a
grapheme string and its (possibly empty) left and right
graphemic contexts; the right part consists of the set of
possible phonemic transcriptions for the graphemec string.
These rules yield for a given input word a sct of
transcriptions. This set is then automatically pruned by
means of global rules (which, for “example, reject all
transcriptions which do not have one and just one stressed

vowel). The right phonetic translation always belongs to the
resulting set.

As our phone sct is subject to changes (which may be
suggested by new knowledge on the pronunciation behavior
of speakers), whilc the phoneme transcription of a word is
stable, its phone transcription may vary in the future. For
this reason, we perform a two-stage translation (from
graphemes to phonemes first, and from phonemes to phones
hereafter) according to two different sets of rules. For
grapheme-to-phoneme translation the rules are 78, while for
phoneme-to-phone translation the rules are currently 66.

TFor the grapheme-to-phoneme translation, the average
number of translations per word is 5.1. The following table
shows the distribution of the number of transcriptions.

Table 5. Transcription Percent Frequency.
1 7.8
2 139
3 18.5
4 21.3
5 10.2
6 8.9
7 1.6
8 4.9
9 1.2
10 5.7
> 10 6.0

We observe that more than 80% of the words give 6 or less
transcriptions.

In the design process, the choice of the correct transcription
is currently performed manually, by means of an efficient
interactive system; for personalization, the user is asked to
provide the spelling and a sample utterance of the new word
and the most likely transcription is automatically selected, by
means of a statistical algorithm.

9. Voice recognizer user acceptance

In this section we describe the experiments carried on at
IBM Rome Scientific Center for evaluation of voice versus
keyboard as a mean for entry and editing of texts. We
performed some preliminary experiments in order to assess
the usability, efficiency and user acceptance of the system,
and to obtain hints about possible enhancements. Previous
studics on this subject were limited, because a real-time
natural-language  spcech  recognition  system  was  not
available. They dealt with voice input of small -artificial
languages [36], or natural language input by means of
simulations [377.

Our experiments studied the task of dictating to the machine
by reading a printed text. ‘We selected an article from “/
Sole 24 Ore,” the major Italian business newspaper, and
asked several users to input it into the workstation twice:
once they used the voice recognition capability of the
system, and the other time they used the keyboard only. The
two sessions took place in different days and in varying
arder.

The text to be dictated, called T in the following, consists of
553 total words, of which 290 were different, and of 3413
total characters. The number of words not included in our
20000-word- vocabulary is 12: this means that the coverage
of the text is 97.8%, about 1% higher than the average
value computed on a large databasc of texts extracted from



the same newspaper. The perplexity of the language model
on this text was only only slightly higher than the average
perplexity for texts from the newspaper. These data suggest
that T is statistically representative of the texts to which the
prototype is aimed.

During the experiments, the workstation recorded in detail
the behavior of the user, by keeping trace of: duration of the
session; words uttered to the system in normal and in
single-character mode; commands given by voice; keys
pressed for character input, text manipulation, cursor
movement; number of times the microphone was switched
on and off.

A questionnaire was submitted to all participants to the
experiment, in order to record their background in the use
of keyboard and of voice recognition, their habits and wishes
regarding text input, and their impressions and opinions
about the usage of the system.

Participants to the experiments were 10 employees of IBM
Rome Scientific Center. The sample was too small to yield
statistically reliable conclusions, but still allowed some
interesting observations. All participants had several years
of experience of electronic text editors and used heavily the
keyboard in their everyday work. Such a group of uscrs
represents an especially severe test for speech input, because
of its out-of-average skills with typing.

The users can be divided into three groups according to their
previous experience with voice input and to their knowledge
of professional typing:

A users who.have some previous experience of voice
input and who need to look at the keyboard when
typing (three persons);

B users who have no previous experience of voice
input and who need to look at the keyboard when
typing (five persons),

C users who have no previous experience of voice

input and who don’t need to look at the keyboard
when typing (two persons).

All users preferred to input the text in a raw way first, and
then revised it and made corrections. We measured the
following values:

Tag Mesaning

IT Input Time, taken by first raw input of text;

RT Revision Time, taken by revision and correction of
text;

T Total Time for input and correction of text;

IE Input Errors (percent {raction of wrong words after

first input);

NE Net Input FErrors, ie. wrong words due to
speaking, typing or recognition errors, and not due
to the absence of the dictated word from -the
recognizer vocabulary;

FE Final Errors, ie. wrong words due not to
correcting.

The following table shows the above lisied average valucs
for the three groups, for voice and keyboard input (times are
in minutes):
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Table 6. Voice and keyboard input. The table
shows the average values for the three
groups (time in minutes). See text for
tag description.

Group| Mode im | rRT| 17| IE| NH FE

A VOICE 13.0] 9.0 220 6.5 3.3] 05

A KEYR. 213 6.7 280§ 2.5 2.5 1.2

B VOICHE 17.0] 17.3] 343] 85| 58] 1.5

B KEYU. 23.01 6.0 29.01 131 1.3] 0.7

C VOICE’ 2051 19.5] 40.0] 8.8} 6.1f 1.5

C KEYR. 16.5] 5.5 22.0( 0.5{ 0.5f 0.1

For all speakers, except professionally trained typists {(group
C), text input is faster by voice than by keyboard, even if
they are using a speech recognizer for the first time. Users
belonging to group C typed at a rate of 212 keys per
minute, and made very few crrors. We observed that all
users stopped many times when dictating, in order to see
what was being transcribed on the screen (the microphone
was switched on and off 21 times, on average). This habit
was less frequent at the end of the sessions, when users
trusted the system more. This behavior was observed even
in users of group A, who dictated at an overall rate of 39
words per minute, while other experiments, performed later
by users who had acquired much more experience with the
dictation machine, showed that a rate of 70 words per
minute can be achicved. The word rate achieved in the
experiments by speakers of group A by dictation was
anyhow higher than that achieved by professionally trained
typists when using the keyboard.

The number of errors after the first input of the text was
higher for voice input than for keyboard input. This is
reflected by the longer time taken by revision and correction.
Some figures which describe user behavior in this phase are:

Tag Meaning

Dw number of Nelete- Word commands given;

nc number of Delete-Character commands given;
MC number of Cursor-Movemen! commands given;
O0C number of other commands given.

Average values arc reported in the following table:

Table 7. Revision and correction of text. The
table shows the average values for the
given commands.  See text for tag
description.

Mode DwW nc MC ocC
VOICE 23 200 900 234
KEYB. 1 70 279 80

Users of group A were especially more efficient in the
revision task, hecause users of groups B and C were
experiencing voice editing commands for the first time and
were brought to over-experiment with them.

Text revision scems the task which can benefit more from
user experience and from improvements to the user interface
(as well as from higher recognition accuracy). Errors found
in a text input by voice are-of a different kind than those
produced using the keyboard: all the words transcribed by
the system belong to the vocabulary. A spelling checker
would be of little help. The system could provide instead,
for each recognized word, upon request, a list of words very
likely to be confused with it.
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The indication that voice input is easier to learn and less
tiring than traditional keyboard input is suggested by the
answers to the questionnaire. All users found more pleasure
and satisfaction in the usage of voice rather than keyboard.
60% of the subjects said that voice editing commands are
more natural and easier to learn than keyboard commands,
while 20% found no difference. The voice editor, as a
whole, was rather simpler and more natural than traditional

editors and word processors.

All users learned in few

minutes to insert pauses between words.

This preliminary study on the usage of a voice-activated text
editor indicated that large-vocabulary speech recognition can
offer a very competitive alternative to traditional text entry.
Future studies on the usage of the voice-activated text editor
will address the behavior of users who gained more
experience in the tool, and of users who are not accustomed
to word processing. Dictation for text creation will also be
investigated.
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